AD=A091 092 NAVAL POSTGRADUATE SCHOOL MONTEREY CA /6 9/2
AN IMPLEMENTATION OF MULTIPROGRAMMING AND PROCESS MANAGE"ENT FO==ETC(U)
JUN 80 S L REITZ

UNCLASSIFIED

e B

o
o
I R 1
i

— o W 3.2
——— IL"-: “§ mﬂ%
i -
= mll 18
- =
2S s s
;

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

S
~ NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

B PR AR A0 ki AMside s N g
T R R

A091092

__THESIS |

—
AN IMPLEMENTATION OF MULTIPROGRAMMING AND
PROCESS MANAGEMENT FOR A SECURITY KERNEL
OPERATING SYSTEM ﬂ
B - by
L. : . '
l < Stephen Leslie Reitz
“r
June 1980
iy
ovie
bos. o
! .
i %&ﬁ? Thesis Advisor: R. R. Schell
; . i e

N Approved for public release; distribution unlimited

SECUMTY CLASSIFICATION OF TuiS P AAR Than Dase Bnteved)

.. ot EPORT DOCUMENTATION PAGE | ertetcertihic rom |
.,AEDFAoq_i 092

4, Y17\ 8- favarSubrrte)— ’
. 1 [An Implementation of Multiprogramming and
[0} Process Management for a Security Kernel
Operating System. — (6. PERFOMUNG ONG. REPORT NUNBER |

I » “M_J#uoﬂll) 1 ¥ ANT NUN]

]D‘ Stephen Leslie/Reitz

S

TaSK

- PERFOAMING ORGANIZATION NANME AND AODAESS

’ RK ONIY NUMBERS *
Naval Postgraduate School ¢/

‘] Monterey, California 93940] g
. ,%E» . |
11 CONTROLLING OFFISE NAME AND ADDARESS \ 3. REPORY 3 7 E
Naval Postgraduate School qQP‘ihiiﬂc_]
Monterey, California 93940 ™13, NUMBER OF PAGES uunotlauool ®AGES
T MONTTORING ASENEY NARE & AOBREI 1! Miforent from Centwoliing Offies) | 16. SECURITY CLASS. (of this rapers)
UNCLASSIFIED

TWWTG_ ‘

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the shetrant antered in Blesk 20, 11 ditterent am Repert)

e e———————
9. SUPPLENMENTARY NOTES

19. xE€y WORDS (Continue an otde i ® - ary end (dontily oy bloch number)
operating systems, distributed computer networks, security kernel, i

computer security, microprocessors, archival storage

. ABSTRACY (Continue an reveres side """‘“."""“""”"“?"""'" . .
—~:&Thls thesis presents an implementation of multiprogramming and

process management functions for the security kernel of a distributed
Y . multiprocessor system. The implementation is based on a family of
23 operating systems designed to provide controlled access in a micro-
: computer network to data bases containing multiple levels of sensi-
tive information.

Multiprogramming improves system efficiency and creates a virtual —>

DD , :::.n 1473 «o1mion oF 1 wov 68 18 OBSOLETE
(Page 1) $/M 0103-016+ 4601 . 1

P i Belookra B [W - o T Pty

e g T

T

environment which frees the remainder of the operating system from
a dependence on processor configuration. Processor management
coordinates the asynchronous interaction of system processes.

This implementation describes a processor mul;iplexlng technique
for a distributed kernel and presents a virtual interrupt
mechanism. Its structure is loop free to permit future expansion
into more complex members of the design family.

/Yy

Accession ror
NTIS G@®agr

Ry AT N A PRSI N)
-~

N
orm 1473 - 2
i-ou-uox SECUMTY C1L AN PISATION @F TS PASEITen Bere Bricveds

- el e AMIAR ST AN R = e AT e -

Approved for public release; distridution unlimited.

An Implementation of Multiprogramming and
Process Managemeat for a Security Kernel
Operating System

by
iy Stephen Leslie Reitz

lieutennant Commander, United States Navy
BS, Purdue University, 1971

PRy 26

é»f Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL L
June 1980 :

v _ fpl RS

Thesis Advisor

Second Reader

omputer Science

Dean of Informataﬁn and Policy Sciences

3

TR = . P .

P s i —— - - ey . . -
RN oy i - PAr——— i > -

ABSTRACT

This thesis presents an implementation of
mul tiprogramming and process management functions for the
security kernel of a distriduted multiprocessor system. The
implementation is based on a family of operating systems
desiened to provide controlled access in a microcomputer
network to data bases containing multiple levels of
sensitive information.

Multiprogramming improves system efficiency and creates
a virtual enviromment which frees the remainder of the
operating system from a dependence on processor
configuration. Processor management coordirates the
asynchronous interaction of system processes.

This implementation describes a processor multiplexine
technique for a distributed kernel and presents a virtual
interrupt mechanism. Its structure is loop free to permit
future expansion into more complex members of the desigen

family.

TABLE OF CONTENTS

II INTHODUCTIONI.............‘.O......»...........I..'..ll
A. BAcKGROUND........O................"....l.l‘...0.14
B. coPPUTER SECURITY. ® 9 0 08000 00000 SO OO NSO e .000015

1. ReferenCe Monitor...o.oo.t...-o.o.00.'.00...16

T TR
- P A LB o e dhe U
< it e, L Pt MR e !

2, SecuPity POliCYeeveecocsccersconcsncensccansel?

a. Non-discretionary PolicCyececesececcaceecalB

b. UDiscretionary PoliCyeeeccececoccesacssesll

2. Security Kernel Design.ccecceececrcocceccecsessld

C. SCOPE OF TEESIS:cceceveaccssooasssssssesssncnnessld

iI. OPERATING SYSTEM DESIGN CONCEPTSececccecossacssaeessll
A. DESIGN PEILOSOFHT ...covvennsscoccsscccnsoccsonssall 1

B. GENEZRAL DESIGN GOALSeeicecescceccccssonsscnsccssld

1. Logical StrucCtUre.csicccecsccssesonsccscasaeeecld
2. TFault ToleranCeececccesccscsccscsvccscsssnesld
3. Efficlency.ceccecccecaccoscssscsscsscsssssnosceclds
C. SPECIFIC DESIGN GOALS.ccesccecccaccccccsesncecsel
1. Internal Security..ccocceccccceconccsoneeces2?
2. Confisuration Independenc@.icccscccccecseccesl?
3. Subd-setting Capadility.cccecececcsccencecees?
D. DESIGN REQUIREMENTS.c.ceccovecccscsccvcscenssssss28
1. TFunctional Requirements.c.ccccececcccccesss 8

a. Process OrganizatioNecceccccscsccescasssell

/"‘
b. Memory SegmentatioN.ccccecocecsccscnssesdl

, C. ADStracCtiON.cccccccencoscsscscsccscscsssdl
“ 4, Resource VArtualizatloN.....eeeeeeeessss33
2. Bardware RequiremenltS...ccccececscccoccssscectd
a. Processor Virtvalization..c.cooceceeceeedd

b. Memory VirtualizatioD.ceececeococcccoosedd

c. Protection Domains.....ccceceeevececcess3®

Et HARD"ARE SELECTION.00.'.o.o.’......o.'..oo.-.loss

L s e e s Aot RS AR i et i i e < ina oo adallh s AR

1. Z2IL0G Z8CC€1.ccecccecocccccncsscscscsssansosal?
a. Memory SegmentatioNecccceccescecccncesed? 3
P. MultiprogrammMing@.eccecceccecccvncsscsccsssct
c. T™wo~domain OperationS.ccecececoccccesssdd
2. Selection RatioNale.eccesocccsscsccoccasneseld
Fo SUMMARY..veecocececcasoscscasscccoscsncsscccenscdd
III. SECURITY KERNEL DESIGN.ceccveccessccsccasccencsaneckl
A. PROCESS TIEW.eeuooeeosonacncsssssasanssoonossssdl i
1. SUDPErvisSOrl ProCesS@S.ccccssscocaccsccnssessdl
2. Kernel ProcesSSeS.ccscccccccccscsossescacsead?
3. Host Environment...cccceoceccosccccvscacssesdd
B. VIRTUAL MACEINE VIEBW .ceeeoecsccecocsocssascncossedd
1. Inner Traffic Controller Module.....cccc.ccbéd
2. Traffic Controller Module.cecceccosseccaccedd?

a’ Scheduling........................Q.'.I47

3. Non-Tiscretionary Security Module.ceecessss51 : ’

;

%
%
&

4.
f 1

11 5.
6.

s - vA A

RSN P S i A S S el
i oo e . ,

1.
2.

Event Manaser Module..'.....'...l..'.......51
Segment Manager MOdUlC.cceccocccctansccssesd

Gatekeeper Module'.....l.'........l.l.....lsz

C. REVIEW..ooesosesccovesscsccscccccscocconcnssssedd
Iv. IMPLEMENTATION ceccecccsvosccsccscoccncccsccccancaesdd
A. DEVELOPMENTAL SUPPORT cccceceveccccccacscnceceesld
B. INNER TRAFFIC CONTROLLER.cecececcccccssenssceeseSE

Virtual Processor Table.c.cececccccacenensel?
Level—=1l Schedulingececerceccocesscencccseseld
@, GetWOrK.ccoeeocccscecccccsoscscossccaceasbl
Virtual Processor Instruction Set..........65
Q. Walt,..ieieececscsccacesccoccssencsocessbE
D, S18Nalecccecesccersocransnsescncnsosncasctl
C. SWAD_VIDBR:cecoscessssssccssosscascncses?e
D € P ¢

e. set-vpreempt.........O....O.."........?s

fo Test _VPreemptececceccccescccscccecnscnss?d

C. TF—AFFIC CONTROLLER..................l....'.....78

1.
f 3 20
1 3

Active Process Table..icececcarctcscecscaess8
Level=2 Schedulin@.ccecoccccccccocccscsccesEl
d, TC_GetworK.uiecoeossocssccscsnassscaasse8l
b, TC_Preempt Fandlereeccsceccccscecocsssssl
EventcountS.ccesccececcscescensscncscconnssBe

a. Advance.o‘...ooooo.oo.ooooooooooo-.0.0.&5

MR 4 v sy, o

P P Oy S e D

0, PR PR % AYrOR TH 307 ST N ROy 7 S -t o

De AWalt.vecescecccoccocsssscnscccsccsceeel
Co REAA..ciccrvecocescrcscscoccssscccenaeelb
d. TicKel.ceeccerccsconcsssssscrsocscccnseas8b
D. SYSTEM INITIALIZATION..cccecocccocccccaccscecesBb
CONCLUSION.ccocecsocscccccsscscsccssscsasssacssceeIl

A. RECOM"ENDATIONSO..O....'...............l.....gl
B. mLLo' ON 'onx..........OOO......O....l......gz
APPENDIX A ~ INNER_TRAFFIC_CONTROLLER LISTING.....cc0000..93

APPENDIX B - TRAFFIC_CONTROLLER _LISTING..ccoccececcecceseel26
APPENDIX C -~ EVENTCOUNT PROCEDURES....ccccceeccecscccesssls
LIST OF REPERENCES..ccccessccctcevsecsctcccccoscssscncsaeseld?
INITIAL DISTRIBUTION LISTeecscceccceccosncrescsscsonensesld9

B iAo Tt MR i s Vi S

s xR el

R O 1 R AT

ATRREY S vy e 1 e K T S sy T . N
ARG v o R

1.
2.
3.
4.
5.
6.
7.
8.
9.
1¢.
1.
12.
13.

15.
16.

B

LIST OF FIGURES

SASS SySteMecescescorscscsccsccsessnsssesocsrescsosnsscscald
Reference Monitor.ccecccocscecssoncccescsccnnsccscessll
Process HiStOrY.ecesosocececcscccacocssccososasoncnssesil
Segmented Addressinf.ecccececececcsseccsscsscscsscaseadl
SASS Protection RingSececeececerscceccovrsssccnssnses b
SASS Process configuration.ccceccececccccececoncanesedd
Distridbuted Eernel.cescecsccocoscocnccsccccccssoscsnsedd
Two-level Schedulingeccoccscecoccccccccscenncnccansssdf
MMU IMag@eecececcacscsossssscscsoossasacsnscscssconsacsssedD
Virtual Processor Table.c..veeecceccvscanscsccsnseseead?
Virtual Processol StateS....csececceccccsssscecsccsssdE
SWAP DPR.ucececcossosecscavesccccasosnascsonsnancsneseBl
Eernel Stack Segmentecceececceccsecaccossscsccensesses€D
GETWORK Procedur@cccssccccescccscesccsscsoscsscssscscscsnesbbd
Active Process Table.cceceecscoscasscsnsssccscocsensesd

Initial Kernel stack....’..........IQ.....I.'......O.Es

R

[T T MR L,

i MR AN,

TP T

ACKNOWLEDGEMENT

This research 1is sponsored in part by Office of Naval
Research Project number NR 337-0€5, monitored by Mr. Joel
Trimble.

I am indedted to a number of people for the suppert they
have given me 1in completinz this thesis. Lt. Col Roger
Schell, my advisor, was a pnever ending source of new 1ideas.
He provided me with solutions to many seemingly unsolvable
provlems, and I greatly appreciate the many hours hne has
spent helping me to clarify my work. Without his atle and
enthusiastic guidance, this thesis could not have bteen
written.

Mike Wwilliams and Bobd McDonnell helped me with many
hardware problems that I encountered ian gettine up and
running on an unfamiliar system.

Finally. I would like to thank my wife, Médelyn, and my
children, Stephen and Monica for their patience and
understanding. They won’t have to tip—toe around the house

any more.

I. INT ¢ N

The application of contemporary microprocessor
technology to the design of large-scale multiple processor
systems offers many potential Ddenefits. The cost of
high-power computer systems could be reduced drastically;
fault tolerance {in critical real-time systemS could be
improved; and computer services could be applied in areas
where their use is not now cost effective. Tesienine such
systems presents mary formidable problems that have not been
solved by the specialized single processor systems availabdle
today.

Speci?ically, there is an increasing demand for computer
systems that provide protected storazé and controlled access
for sensitive information to be shared among a wide range of
users. Data controlled by the Privacy Act, classified
Department of Tefence (DoD) information, apd the
transactions of financial institutions are dut a few of the
areas which require protection for multiple levels of
sensitive information. Multiple processor systems which
share data are well sulted to providing such services - {f
the data security problem can be solved.

A solution to these problems - a multiprocessor system

design with verifiadle information security - is offered 1in

AR . P TN e . B 1 g

RS

- ol A e i b ML

a family of secure, distrituted multi-microprocessor
operatineg systems designed dy O°Connell and Richardson [1].
A sudset of this family, the Secure Archival Storage System
(sass) [2,3], has been selected as a testbed for the general
deslgn._SASS will provide consollidated file storage for a
network of possibly dissimilar "host” computers. The system
will provide controlled, shared access to multiple levels of
sensitive information (figure 1).

This thesis presents an implementatior of a Ddasic
monitor for the O°Connell-Richardson family of operating
systems. The monitor provides multiprogramming and process
management functions specifically addressed to the control
of physical processor resources of SASS. Concurrent thesis
work [4] 1is developine a detailed design for a security
kernel process, the Memory Manager, which will manage SASS

memary resources,

12

g2 Wﬁ“‘. "

SASS SYSTEM

°©o o o
DATA LINKS

13

SASS BOUNDARY
LOCAL
ggﬁ‘L cPU 000 MEM CPU
GLOBAL 1
MEM

SECONDARY SECONDARY

MEM o o o MEM

(e.g., (e.g.,
hard disk) hard disk

Figure 1

A. PBACKGROUND J

The general family design is composed o0f a supervisor
and a security kernel. The supervisor provides dynamic
linking, a discretionary security policy, demand memory
manazement, and a hierarchical file system in support of the
user. The security kernel manages physicai resources to
provide scheduling, interprocess communication and
syachronization, and a non-discretionary security policy.
The design 1is 1loop-free to permit the implementatiorn of
system subsets raneing from a Simple monitor to a eeneral
purpose computer utility.

SASS is a sudset of this system and does not require use
of several 'higher levels of the general system design.
Dynamic linking, demand segmentation, transient prccesses,
and a user domain are not necessary for its intended
operation, and are excluded. The software of SASS is
partitioned into two domains. The security kernel, which is
the most privileged domain, manages system physical
resources in a manner desigsned to prevent unauthorized
information flow, regardless of action taken by other
elements in the system. The 1less privileged domain, the
;upervisor (2], provides each host with a hierarchical file
system in which it may store and retrieve files and share
them vwith other hosts. The hosts send commands and transfer

files via bidirectional digital links. SASS was designed for

14

VL raegn miat

N TR e 8 VI S AP ANR TAO h Tere

PN

implementation of currently availabdle microprocessor
hardwvare. Multiprogramming is vused to improve system
efficiency and to create a virtual environment which frees
the remainder of the operating system from a dependence on
the physical processor configuration. Frocessor management
provides a means of coordinating the 1{interaction of the
asynchronous processes whican comprise the system. This
implementation employs a processor multipnlexing technique
for a distributed kernel and presents a virtual interrupt
mechanism. The modular, bhierarchical structure of the
software 1is loop-free to support system expansion to higher
level functions.

Although the primary goal of the design is security, the
clean, logical, process-oriented structure of SASS offers
other bdenefits as well, includine fault tolerance, resource

configuvration independence, and efficlency.

B. COMPUTER SECURITY

The need for providing protection for information within
a computer system 1s well documented. Development of the
security kernel technology [5,6], bhas transformed the
operating system designer’s approach from a game of wits
with penetrators into a methodical design process.

In general, security is provided by providine protectior

for 1information 1in accordance with a specific protection

15

pelicy. In the case of computer security this is
accomplished by coantrolling the access of people to
information. Althoueh this protection can bte provided by
external controls (e.g., confining the computer system and
all its users within a physical security perimeter), this
method is inefficient and prone to human error. Furthermore,
a distrituted computer network will protably de dispersed
over too wide ar area to bde physically confined. Supported
by the security xernel approach, an internal protection
mechanism controlled by the computer operating system is a
feasible solution.
1. Reference Monitor

The concept of protection is realized withir the
computer system by the 1implementation of a mathematical
model of information security. This model is based on an
abstract representation of security called the Reference
Monitor [7?]. The Reference Monitor describes a meckanism for
controlling the access of subjects to objects, based on a

set of access authorizations (figure 2).

Reference Monitor

SUBJECT

REFERENCE
(e.2., process)

MONITOR
+ I

ACCESS

AUTFORIZATION

OBJECT
(e.2., file)

Figure 2

16

§
i
{ |
1

R NP PRV

R TR

s inbbe by man el <

oy

Every time a subject attempts to access an otject,
the Peference Monitor checks to determine if the sutject has
autherization to perform the desired operation (e.z., write,
read) on the obdject. If the policy does not avthorize the
access, the Reference Monitor will prevent the sudbject from
performing the requested operation. This mechanism 1is
realized within the operating system as the security kernel.
Several system features are required 1in order <for the
mechanism to function correctly.

First, every reference to information (i.e., every
access to primary memory by the processor) must go through
the security kernel.

Second, the implementation of the security kernel must
be an exact representation of the mathematical model of
information security.

Third, the security kernel must be tamper-proof.

2. Security Policy

The security policy to te enforced by the computer
system consists of external laws, rules, regulations, etc.,
which estabdlish permissable information access independent
of the computer system. Therefore, a computer system will bde
secure only with respect to a specific security policy. The
security kernel concept supports a dbroad range of security
policies that can be divided into two classes,

non-discretionary and discretionary security.

17

N
2 MV TR W=/~ W AR Y N MY 1

a. Non-discretionary Policy

Non-discretionary security policy uses labels to
insure only permissable access of subjects to otjects is
provided. Obdject 1labdels reflect odbject sensitivity and
subject 1ladels reflect subject authorization. (For example,
Natiomal Security Policy labels include Unclassified.
Secret, etc.). A non-discretionary security policy provides
compromise protection (from unauthorized reading), integrity
protection (from wunauthorized modification), and must
prevent 1information leaks resulting from indirect access to
unauthorized information as well. A non-dicscretionary
security policy requires that all sudjects and otjects have
labels. Most contemporary computer systems do aot provide
this explicit 1lateline and therefore implicitly make all
access permissatle.

b. Discretionary PFolicy

Discretionary security policy provides a finer
division of access by allowing irdividual subjects to decide
which of the permissable accesses, determined by
non~discretionary policy, will actually be allowed (e.g.,
DoD’s "need to know"). Many contemporary computer systems
support discretionary security policy with access control
lists, file passwords, capability lists and other

mechanisms.

o

= Fen L e e -
A - e % s

T e T AR S W e v il | . g

3. Security Kernel Design

By careful interpretation of the mathematical model
of the Reference Monitor, the security kernel is designed to
be a sudset of operating system functions. Kernel primitives
form an interface between this subset and the remainder of
the system. If these primitives are implemented correctly,
their use guarantees that information will be protected in
compliance with system security policy, regardless of any
action taken by other portions of the cperating system or by
the wuser. A more detailed discussion of the security model

is provided in (4,5,6].

C. SCOPE OF THESIS

In this chapter a sudset of the general operating
system design, the Secure Archival Storage System (SASS),
was descridbed. The concept of informatior security was
examined and the security kernel was presented as a
technically sound approach to the problem of providing
internal computer security.)

Chapter fTwo will discuss the design goals of this
operating system. Functional design requirements will ©de
developed and the issues of physical resource managemrent and
performance will be traced to specific attridbutes desired in
system hardware. The rationale behind the ultimate selection

of Zilog’s 28g¢e¢ Microprocessor and 26¢1¢ memory managerent

19

P

unit (MMT) for use in the SASS testbed implemertation of
this operating syster will be discussed.

Chapter Three will descrite the high level design of
SASS with an emphasis on the security kernel design. & view
of the user (computer host) eavironment as a collection of
cooperating processes will be presented, and tae
hierarchical structure of the distridbuted kernel rodules
will be examined in detail.

Chapter Four will present an implementation of the SASS

security kernel modules taat provide multiprogramming and
; processor management. The coanstruction of the virtual
machine environment will be described and the advantages of

a two—level scheduling mechanism will be explained.

Finally an evaluation of this 1implementation will ©be
presented with recommendations Tor improving the design and

suggestions for follow on work. g :

II. PERATIN YSTEMS DESIGN CONCEP

The kernel primitives providine multiproeramming and
process management form one of the smallest and most bdasic
subsets in the family of operating systems designed by
0‘Connell and FKRichardson (4]. As developed here they were
implemented specifically to support SASS. In general the
same Kkernel primitives will support all rembers of this
design family.

Before discussing the high 1level design of the SASS
security kernel and presenting an implementation of these
primitives, it is useful to investigate the general design
methodology applied to the development of this operating
system. In this chapter the design goals of SASS will |Dbe
analyzed and traced to functional requirements and hardware
attributes considered necessary or desiratle in support of
the system’s design goals. It 1is recognized tkat the
operating system user Will protadly not address these issues
directly when specifying system design goals. The material
presented here concerns the approach of the system designer
to the definition of requirements implicitly related to user

desien goals.

o W denote AR

P p e et

A. DESIGN PFIIOSOPRY

Two issues confront the operating system designer.
First, he must provide system functions whick support the
services requested by the user. These functional
requirements affect the 1logical design of the system.
Second, he must address iésues of cost and performance. Cost
and other management considerations will not ©be addressed
here., Ferformance issues concern the management of physical
resources and ultimately can bYe reduced to hardware
requirements.

There 1is a considerable amount of literature devoted to
the development of the functional design of operating
systems. Dijkstra [€] has described a technique for reducing
tte complexity of the design by allocatine operating system
activities to a number of cooperating processes. Process
structure is simplified in turn by defining its functions in
levels of 1increasing abstraction and %ty applying the
principles of structured programmine.

vadnick and Donovan ([9] have described an operatine
system as a hierarchical extended machine. Program modules
are added to the system hardware to provide many extended
instructions in addition to the hardware instructions
available on the tare machine. In complex systems one
extended machine may be constructed upon ancther to form a

system composed of levels of abstract (virtual) machines.

22

ORI

PRSI IR VI SO A R O PN T S Y S

Saltzer (12] and Reed (11, 12] hnave discussed the
advantaees of resource virtualization and have describded
some usefyl interprocess communication mechanisms. The
Zzeneral design stratesies presented {in this and other
research aid the operating system designer 1in developing
system functions in a clean, logical, verifiable design.

The selection of an appropriate computer architecture,
which supperts bdoth functionsal requirements and the
efficient management of physical resources, often proves to
be a more difficult issue. Frequently operating systems
desien 1is shaped by the capabilities of system hardware.
This may be a result of performance limitations or cost of
available hardware, but often this course is taken Yecause
traditionally, system design begins with hardware., Since a
primary e0al 1ian operating systms desien 1is to create a
cspecific operational environment for the wuser, it would
appear to be preferable to design from the desired
environment “down to" the hardware. In this way all
components of the system, software and hardware alike, are
evaluated in the light of the ultimate goals of the system,
and any incompatabilities dbetween required functions and
hardware capabilities will dYe discovered early in the
design. Then, if modifications are required, design changes
can be rade at @8 high 1level which will preserve design
integrity. LSI technology currently provides a wide variety

of relatively inexpensive microprocessor hardware from whizh

23

il e .

to select specific physical components. Furthermore, it 1is
of ten feasible to design special purpose hardware to
specification, So the traditional restrictions on hardware
versatility 1in systems design need not apply ir many cases
to microprocessor systems,

In summarv, the top-down design philosophy can tGe

applied to operating systems design in the following manner:

1. Identify general and specific design goals. :
2. Derive functiornal design requirements.

3. Identify performance requirements.

4, Select system hardware. !
5. Develope kernel software.

6. Tevelope the remainder of the 0/S software.

2. GENERAL DESIGN GOALS

Althoush tany desizn =zoals depend upon specific system

application, there appear to be some attritutes desiratle in
all operating systems.
1. Tlogical Structure

Computer system design is an engineering prodlem and
the tools of the engineerine design process should be
applied to the development of software as well as hardware
{13). Clarity should be a major goal of any design for if
the operating system cannot be understood easily it will be
difficult to test, difficult to maintain, and its
correctness will always bte {in doubt. A sound enginering

design philosophy is not guaranteed to generate error free

24

LT hed L LuLrTEEIT LY

HERR 2V NPT e

systems, bdut 1if system functions are cleanly oreanized and

well understood, then it is likely that there will te few
errors and these can be corrected without difficulty when
discovered.
2. TFault Tolerence
If an operating system is to bYe reliadle, the
software it wuses must bde protected from damage whenever
possible. In particular, tasks performed by the system
should be isolated from another so that a malfunction (e.g.,
as tne result of hardware failure) in one task has no effect
on others.
3. Efficiepcy
The efficient use of physical resources {prccessors,
memory, periphals, etc.) continues to te a primary decign
goal. Bowever, since hardware 1is no 1longer the scarce,
expeansive commodity it once was, a concern for overall
system efficiercy (i.e., higher thorugh-put, faster response
time) may be more dimportant. With appropriate component
selectien many software functions c¢an be replaced by
hardware functions that can provide an improvemert ir syster

performance at a small additional hardware expense.

C. SPECIFIC DESIGN GOALS

The family of operating systems designed by O°Connell

and Richardson preovides all of the services expected of a

Mwy.-.-ma—-,-«.—-—v- - ——t i e bR A .

| el At

pAEH oo Ayl i)

state of the art, general purpose operating system. Many of
these general services are not necessary in the SASS subset
of the family. The number of processes required by <SASS s
determined by the numbdber of host computers linked to SASS
hardware. A design cholce was made to fix this number at
system generation time. Therefore dyrnamic process management
is not required; SASS processes exist for the life of the
system. A primary function of SASS is the transfer of files
between host computers and SASS via bidirectional digital
links. As a result, the system will nhave a 1lcw transaction
rate, and the relatively fast response time desired in a
time-sharing system i_ not required here. Sass doces not
provide programming services to users; the system strictly
manages an archival storage system. This elimirates the
requirement for a user domain and because the demands on
primary memery are not excessive, there is no need for
dynamic memory management.

Other services of the ¢eneral svetem provide
essential support to SASS. These services 1include 1I/0
management, file management, anrd the physical resource
management and information protection functions provided Dby
the security kernel.

The SASS requirement to provide multiple host computers
(users) with controlled, shared access to a multilevel
secure data warehouse” leads to several design goals. These

include: internal security to proctect infermation in a

26

——— e ammmASSS T

distrituted computer network; configuration independence for
system versatillity; and a subdbsetting capability to support
future system expansion to more complex memters of the
design family.

1. Internal Security

A unique feature of SASS 1is the specification of
multilevel security as a primary design goal. Multilevel
security provides controlled sharing of information of
varyine sensitivity among many usSers in accordance with an
access policy implemented internally by the operating
system. It is essential that a system supporting a remotely
accessed data. tase containing information of different
access classes be provided with an 1internally enforced
security policy.

2. Configuration Independence

The resource configuration of a mul ticomputer system
i1s highly changeable. Processors are added and removed;
memory 1is reconfigured; interconnection schemes are altered
and peripherial equipment is changed. The operating system
of such a design should be sufficiently flexidle to permit
maintenance and to allow for growth and reconfiguration
without requiring drastic system redesign or noticeabdly
affecting the user’s eavironment.

3. Sub-getting Capadility
Operating system sub-settineg” refers to the ability

to form meaningful subdbsets of the design by eliminating many

27

sl

of the services that can be provided by tne system without

affecting the usefulness of the remainder of the system.
Sub-setting permits the system to be tailored to fit a
number of specific desiegns ranzing from a simole monitor to
a full service time-shared computer utility. The
implementation presented 1in this thesis creates a ronitor
that provides multiprogramming and processor management.
This subset supports more complex family memders of the

design such as SASS.

D. DESIGN REQUIREMENTS

In a top~down approach to design, goals are clarified
and defined by requirements which describe either the system
functions or address cost and performance issues (hardware
requirements). The functional requirements defined dYelow
support the specific desien ~eoals of SASS and provide
features desiradle in any operating system, such as a
logical structure, fault tolerance, and efficiency of
operation.

1. Tunctional Requirements

Functional requirements define services which must
be provided to support the user’s environment.
a. Process Organization
By designing an operating system as a collection

of cooperatine processes, system complexity can be greatly

28

=V TR

g e

PR o A A A P 3 T P SN e e 1 L ko a3 ottt Aot s b mem e e g4 o

reduced [€]. This is because the asynchronous nature of the
system can bYe structured 1logically by representing each
independent, sequential task as a process and by providicog
interprocess communication mechanisms to prevent races and
deadlocks during process interactions.

The notior of a process provides a complete
description of all instructions executed ard all memory
locations referenced during the performance of a task. A
process 1is defined by an address space and ar execution
point. The address space is the set of memory 1locations
which covld be accessed during process execution. (The
process is viewed as a past, present and future "history of
memory locations which actually were referenced.) The
execution point is the state of the processor at a glven
instant dvring process execution. In the abstract view, an
address space is defined by a collection to discrete points,
each representing a memory word. The process i< descrited by
the path traced through this address space from process
creation to destruction. In figure 3 the main path traces
the process execution point as it moves from one instruction
(1.e., memory word) to another during process execution. The
branches from this execution point path represent data

references.

239

s i e

Process History

Address space

Process

creation(J/,(

Process
*lsivdestruction
Figure 3

Several advantages result from using a process
oriented design. As a tool for dealing with the asyncaronrous
nature of system operation, processes provide a simple,
logical, nigh-level structure for the design. For example,
the Secure Archival Storage System supports each host with
three processes: a I/0 Manager, a File Manager, and a Memory
Manager, which interact to provide sSecure file managemrent
services to the host. This interaction will be described
further in the next chapter. Since each process is confined
tn a secific address space, tasks are isolated from one
another and system fault tolerance is improved. By providing
an internal representation for each user, a process nicely
fits the definition of a "subject” in the Reference Monitor
and therefore supports the design goal of providing internal

security.

—— e

i
|
{
|

|

Ve ol

k., Memrmory Segmentation

The address space of a process is composed of a
collection of segments. A segment is a logical collection of
information (e.g., procedure, data structure, file, etc.)
and 1s the basic logical object of this design. Figure 4
tllustrates the two-dimentional nature of the segment
address., Bach segment consists of an arbitrary region of
memory containing a sequence of words with conventional
linear addresses. Two-dimentional addressing frees
information from dependence on a particular memory location

by making it arditrarily relocatable.

Segmented Addressine

<KSEG #nd>> OFFSET

Descriptor segment Segment #n

T
0
f
£
S
e
t

Figure ¢

The descriptor segment provides a 1ist of
descriptors for all segments in & process address space. In
addition, segmentation supports information sharine since a

segment may btelong to more than one address space,

dxam

|
3
|

Segmention also provides a means of associating 1Ilogical
attridvutes and labels wlth each segmeat, such as access
class, domain, etc. This feature supports segments as
internal representations of the Reference Monitor’s
"object”.

>c. Abstraction

Abstraction provides a method for reducing
problem complexity by applying a general solution to a
collection of specific cases [14]. Structured proerammine
provides a tool for creating abstraction in software design.
By strictly applying two special rules in addition to the
general principles of structured programming, & structure
consisting o? 1levels of 1increasing abstraction carn be
constructured,

rirst, calls cannot ©be outward toward higher
levels of abstraction. This frees 1lower 1levels from a
depen?ence on higher levels by creating a loop~free
structure [15] and results in a design which is'capable of
having suhsets,

Second, calls to lower levels must te by Special
entry points or gates. Each level of abstraction creates an
virtual hierarchical machine [9]. The rate to each level
provides a set of 1instructions created for that virtual
machine. Thus higher levels may use tne resources of lower
levels only by applying the instruction set of a lower level

machine., (At domain bouvndaries, use of gates is strictly

32

st s 2

Ce s A S e

T Ty R P

o ———

e "y i

enforced by a ring-crossing mechanism; otherwise gate use is
implicit 1in the structure of the software.) Once a level of
abstractior has Dbeen created, the details ef its
implementation are no 1longer an issue. Instead users See
layers of virtual machines , each defined bdy 1its extended
instruction set.

Each process used in SASS is designed in levels
of abstraction. Wwhen the rules of atstraction are applied to
level @, the physical resources of the system, these
resources are virtualized”. Thus the first 1level of
abtstraction creates “"virtual processors”, ~virtual memory”,
ard "virtual devices” from the ;ystem's hardware. At each
higher level the detail of the design is reduced. The gate
at the Ybdoundary bvetween the hisghest level of the security
xernel and the lowest level of the supervisor provides a
mechanism for isolating the xernel as well as insuring that
each memory access is via kernel software. This mechanism is
implemented in SASS Yy a ring-crossing mechanism called the
Gatekeeper.

d. Resource Virtualization

The first 1levels of abstraction above system
hardwvare create virtual representations of physical
resources (virtual processors, virtual memory, virtual
periphals). Since upper levels of the design operate on
these virtual resources, rather than on paysical resources,

most of the design (i.e., everything above resource

33

virtualization 1levels) 1is independent of the physical
configuration of the system. By providine virtual to real
resource binding in the kernel, and by enforcing entrv into
kernel levels with the Gatekeeper, SASS protects physical
resources from tampering and insvres memory access only via
the kernel. AS a result, the kernel modules of each process
will guarantee that the system’s non-discretionary security
policy 1is enforced. Iancluding in the kernel oaly those
functions essential to system security keeps it small and

reduces tae jod of verification to manageabdle preportions.

2. Zardware Heguirements

Virtual resources are created by tne multiplexing of
various types of 1information on a physical resource.
Multiplexing can te defined as the use of a single resource
for different purposes at different times. For example the
physical tus 1lines can be used both for addresses arnd data
durine different times durine the machine cycle. Similarly,
logical wusers of a hardware system can share resources. Tae
atility to rmltiplex processors and memory efficliently
provides a mechapism for the virtualization of these
physical resources.

a. Processor Virtualization.

A virtual processor is a data structure that
contains a complete description of & process in execution on

a physical processor at a given instant. This description is

34

i
i

r-—_._~ — —
B

” g Uiaan

contained 1in the process execution poirt. The address space
of the process must be accessadle to the virtual oprecessor
when 1t 1is loaded on (bound to) a CPU. To provide a useful
virtvalization capability, the CPU must have the ability to
efficiently multiplex process exection points and address
spaces (i.e., it must support multiprogramming).

b». Memory Virtualization.

In many memory handling <chemes Process cannot
run unless the entire address space is loaded in primary
memory. This may require a larse main memory or it may
restrict the size of the address space. An alterrative plan
requires an ‘operating system which manages primary and
secondaryv memory to create the illusion of & memory which is
larger thar the system’s primary memory. Since the larger
memory 1; only an illusion, it 1is often called virtual
storage. The 1logical, relocatadle, 1information otjects
created by memory Segmentaion, provide an essential merory
multiplexing mechanism for the efficient implementaticn of
virtual storage.

¢c. Protection Domains

An essential requirement of internal security is
that the security kernmel be isolated from other elements of
the system. This car bde accomplished by the construction of
protection domains. Protection domains are used 1to arrange
process address spaces into rings of different privilege,

Thi{s arrangement is a hierarchical structure in which the

35

most priviledred domain is the innermost ring. The structure
essentially divides the address space into levels of
abstraction with strictly enforced gates at the rine

boundaries (Figure 5).

SASS Protection Rinas

Gatekeeper

Security Kernel

Bare Machine

Figure 5

Protection rings mav be created in software, but
a hardware implementation, where eate use is enforced by
hardware, is much more efficient [16].

The protection provided by the rine structure is
not a security policy. (Security protection is implemented
by a lattice structure XXnown to the Non-discretionary
Security module ‘in the kernel.) It does, however, enforce
the hierarchy of the virtual machine by creating a

privilepsed kernel ring within the supervisor ringe.

E. HARDWARE SELECTION

The manifestation of an operating system desien 1is, of
course, software in execution on system equipment. If system

36

i

el — il e s

equipment must be selected early in the design, care rust be

taken to insure that overall system design goals are
compatidble with actual hardware capabilities. If design
goals must be met (e.g., the enforcement of internal
security in SASS), then actual hardware selection should be
made léte in the design process. Then, ever if & poor
hardware choice is made, the peralty for correctirg {t will
be small, since only the lowest level of the desizn (where
resources are virtualized) need be changed. In any case the
desien of the operating system and the desisn or selection
£ system hardwvare must proceed in concert.
1. 2Zilog 28691

The 7P¢¢1 is a general purpose 15-tit microprocessor

(177 with arn architecture waoich supports memory segmentation
and two-domain operations. It was selected as the tarzet
machine for implementation of the system because of the full
range of support and close match it provided to design
requirements. These supporting'features are descrited telow.

a. Memory Seementation

The CEU can directly access 8M bytes of address

space using a memory segmentation capability rrovided
externally by a Memory Management Unit (Z821¢ MMU). The
23-bit address required to address 8M bytes is a logical two
dimensional address consisting of a 7-bit segment numder and
a 16-bit offset. The memory management unit converts this

into a 24-bit address for the phyeical memory. The address

37

ado i

e

BEAS RN Sl cob v R, a8 T BTG A R LT PR 0 -

space can bYe divided into as many as 12E relccatabdle
sezments containine up to 64K bytes each. Each merory
segment carn be assigned several attributes which provide
memory access protection (read only , system mode only
(t.e., ring #), execute only, etc.) and memory management
data (changed, referenced). With these capabilities the
Z8¢e¢1 CPU can support all requirements for segmentatior,
memory virtualization and protection domains.
t. Multiprogramming

Processor multiplexing is supported by tae C:U’s
mul tiprogramming capabilities. MULTI-MICRO instryctions aid
in estabdlishing a synchronmization mechanism (by rmutual
exclusion) between multiple processors. Seperate stack, data
ard code address spaces are maintained for eack rire of
operation. The load myltiple instructior allows the contents
of registers to te saved and 1loaded efficiently. These
features permit efficient storing and loading of ©process
execution points,

Address space multiplexineg is also supporied bdut
is somewhat 1inefficient. In some systems, suvch as Multics
[1€], a descriptor base register (DBR) is provided to point
to a brocess descriptor segment in memory, so changing the
address space of the physical' processor is accomplished
merely by changing the DBR. Since the Z&2¢¢1 CPU implements
the descriptor sepment as$s a collection of descriptor

registers in the MMIT, all of the descriptors for the address

38

R T R WPy

e e o

space must te saved and loaded to change processes. Thls can

make processor multiplexiuz (multiproeramring) quite

ik S G o

inefficient. In the worst case, when tne entire MMU is saved

3 1 oareha s

§ and loaded, a process switch will take about 2 ms. It may be ;
. possible to improve on this performance bdvy increasing the ;
numdber 6f MMU’s in the system. Then the address Space can be |
: changed simply by switching control to an;ther MMU.

c. Two-=Domain Operations

} The Z5¢¢1 CPU can operate in either system mode
or normal mode. In the system mode all operations are
allowed, %btut 1in the user mode, certain system instructions
are pronibdited. . The system call instruction allows
% controlled entry to the system mode. This two-domain

instruction capadbility suppcrts the two domain sturcture of

SASS by providine a single controlled entry into the kernel
(SYSTEM CALL instruction). The descriptors contaired in the
MMU0 reeisters provide the capability to partition process
address spaces into supervisor and kernel domairs.
} 2. Selection Rationale
; The characteristics 1listed above - processor
multiplexing support, a memory segmentation capability,
ﬂ multiple domain insturctions, and multiple domain mermory
partitioning - are features which are essentigl to an
effictent implementation of SASS. The 2E€¢1 has other
desiradle features: vectored and ron-vectored interrupts,

laree, powerful instruction set, many datas types, etc. These

OSSO ek, S tie A A Ay

39

attritutes make the Zilog system a suitable choice as a dare

machine for the Secure Archival Storage System.

F. SUMMARY

This chapter has provided a description of the

|

|

{ methodology employed 1in the design ané specificatior of
i SASS. In particular it was noted that a top-down desien
|

philosophy most effectively supported implementation of
system design 20als. Eequirements supportine the primary
deslgn goal of internal security and other general and 3
specific goals were defined and traced to desired hardware
{ capabilities. Fimally, capabilities of Zilos’s 22¢el

X ' microprocessor winich support the SASS design were descrited.

Chapter Three will provide an overview of the SASS

design. The desigr will be descrided from a frocess
viewpoint and the hierarchical structure of the distriduted f

xernel will be examined.

?5 49

3
v
PR d, v

IIT. SECURITY KZRNEL TESIGN

The high 1level design of the Secure Archival Storage
System car be descrited by a collection of <cooperating
processes. The use of processes to perform operating system
functions greatly simplifies the problem of descriting the

asynchronous marner in whicn services are requested.

A. PROCESS VIEW

There are two kinds of processes within SASS, supervisor
processes andi kernel processes. Supervisor processes provide
high level services to host computers [2]. Certain functions
of the operating <cystem are distrituted throughout all of
these processes; that 1s, supervisor processes loglically
share a <collectior of distributed kernel modules. Kernel
processes provide specialized services within the operating
system. The system wuser s not aware of the existence of
these processes, but they are called upon, within the kernel
domain, by supervisor processes to perform necessary

operating system functions in support of user services.

o

1. Supervisor Frocesses

One pair of supervisor processes, an I/C ~anager and
a File Manager, represents each computer host supported by
SASS.

The File Manager controls SASS and directs all
interaction between SASS and computer hnosts ir order to
maintain a structure of hierarchical files on benalf of each
host It interprets commands received from hosts via the 1I1/C
Manager ard coordinates tae execution of requested services
with assistance fror the I/0 Manager and the Memory Manager
(described bdelow).

The 1/0 Manaeser traasfers information via a link
between each host and SASS. Tata is transfered ty fixed-<ize
packets in cormand, data, and synchreonization formats. The
I1/0 Manager provides only a transfer service and does not
interpret the data.

2. Xerpel Processes.

The two kernel processes used by SASS are the Memory
Manager and the Idle process. The Memory Manager controls
primary and secondary memcry. The design of this process is
the topic of concurrent thesis research [3]. The Merory
Manager transfers segments Yetween primary and secondary
memory in response to requests from supervisor processes.

™he Idle process defines the "no werk state of the
system. SASS attempts to schedule useful work on system

processors whenever possitle. Only when there is no work to

42

be done, {(i.e., nec commands pending from nosts) will this
process te called upoen to execute.
2. fost Fnvirconment

Fost computers view SASS as a remote data warehouse
where they mayv store and retrieve files (figure €). Each
host is provided with a virtual file hierarchy constructed
from directory and data files. A pair of SASS supervisor
processes (an I/0 Manager and a File Manager) provide each
host with a set of commands by which it may store and
retrieve files in its virtual file system and share files
with other hosts. The distributed kernel functions of each
process control the physical resources of the system in

support host commands and SASS security'policy.

SASS Process Configuration

supervisor
kernel
Idle
hardware
CPU MMT PRI MEM SEC MIM
"data warencuse

FIGUR® €

E. VIRTUAL MACVINE VIEY

The distriduted modules of the security kernel create a
virtual hierarchical machine which controls process
interactions and manages physical processor resources. The
gernel is not aware of the details of process tasks. It
knows each process only by a name (viz., an entry number in
a tabdle) and provides processes with scheduling and
interprocess communication services tased on this process
identifier. All supervisor processes share the modules of
this virtual hierarchical machine (Figure 7).

The kernel is constructed in layers of abstracticn. Each
layer, or level, builds upon the resources created at lower
levels. The rules cf abstraction described in Chapter 2 were
applied to the design of this structure. Level € is the tare
macaine which provides the physical rescurces (processors
and storaee) upon which the virtual machine is constructed,
The remainder of this chapter will descrite the 1level of
virtualization (or layer of abstraction) created by each
distributed kernel module.

1. Ipper Jraffic Contreller Module

level-1 of this virtual machine is the Inner Traffic
Controller Module. This module creates a set o¢f virtual
processors with the extended instruction set: SIGNAL, WAIT,
SWAP_VDER, IDLE, SET_VPREEMPT, TEST_VPREEMPT, and
RUNNING_VP,

i eedis e ke

niid

‘
P
i
i
1
4

Supervisor

DISTRIBUTED KERNEL

Kernel

GATEKEEPER

EVENT
MANAGER

Level 3

SEGMENT
MANAGER

ND
SECURITY

\/

TRAFFIC
CONTROLLER

Level 2

INNER
TRAFFIC
CONTROLLER

Level 1

CPU

MMU

Figure 7

45

Level 0

SIGNAL and WAILT provide ar interprocessor

communication mechanism used within the xernel to provide

multiprogramming. These 1instructions invoke the level-l i |
scheduline procedure, GETVORK, which multiplexes wvirtual j
processors on & physical processor. i &

S¥AF_VLCBR and IDLE are instructions invoked from

level=2 by the Traffic Controller Module to schedule

4 processes on a virtual processor.

{ STT_VPREEMPT and TEST_VPREEMPT create a virtual
processor interrupt mechanism. SET_VPREEMPT is invcked from
level-2 when the traffic controller desires to load a new
process on & virtual processor that 1is not scheduled.
TIST_VPREZIMFT is invoked by the Gatekeeper of each

distributed process upon every exit from the kernel domsain.

The Gatekeeper wunmasks virtual interrupts by testing the
interrupt flag of the scheduled virtual processor. If the
flag 1is set, a virtual interrupt handler is invoked,
otherwise the process enters the supervisor domain normally.
RUNNING_VP is invoked from level-2 to provide the
Traffic Controller with the 1identity of the currently

scheduled virtual processor. The identity of a particular

processor must bte known in the virtual eanvironment, just as

} the identity of a physical processor is required 1in a

multiprocessor system.

2. Traffic Controller Module

The Traffic Controller resides at level-2. It
manages the scheduling of processes cr virtual processors by
invokine the extended instructions of the virtual processors
in level-i. In a&addition to 1implementing the level-2
scheduline alesorithm, the Traffic Controller creates the
extended instruction set: ADVANCE, AWAIT, and FROCESS_CLASS.

ATVANCE and AWAIT are used to implement eventcounts
and <sequencers [11], an inter-processor communication (IPC)
mechanism invoked by the supervisor. Although SIGNAL and
WAIT provided an adequate interprncessor synchronization
mechanism within kérnel. Farks (2] determined that
supervisor process synchronization would be more effectively
served in the secure environment of SASS by the use of
eventcounts.

FROCESS _CLASS is invoked from level-3. It returns
the 1ladbel, subject access class, of the current precess for
determining a sudbject-object relation.

a. Scheduling

Scheduling functions are divided Dbetween the
Inner Traffic Controller and the Traffic Controlier. The
Inner Traffic Controller multiplexes virtual processors on a
CPT. The Traffic Controller schedules processes on virtual
processors.

The division of the scheduling algorithm bvetween

these two levels simplifies its design, because it seperates

47

the issues of virtual processor management
(multiprogramming) from virtual memory management [12]. A
desiegn choice was made to provide each system CFU with a
small fixed set of virtual oprocessors. Since the virtual
processor data bdase is shared by all system CPU’s, it must
remain permaently in global memory.

The process data bdase, used to 1implement level-2
schedul. ' ng will bde much larger. Since supervisor processors
are known to the entire system, this data must also bde kept
in #lodal memory. Because 1level-2 1is sudject to mermory
management, this data could be kept on secondary storaee and
moved to primary memory when requested.

SASS does not provide dynaric mewory .management,
therefore the two-level scheduling design presented here is
not essential to the design. However, the structure has beer
provided in this implementation to support more complex
family members of the 0°Connell-Richardson design. Figure 8
illustrates the two levels of scheduling employed <ty the
distributed kernel.

The two virtual processors (Mem_Mgr_VP and
Idle_VP im Figure 8) are permanently btound to kernel
processes and are not in coatention for process scheduling.
The remaining VP’s are temporarily tbtound tc¢ supervisor
processes as determined by the Traffic Coatroller. If umo

supervisor process is availadle, the Traffic Controller

W s ey

T ™ T o
. R iStiachuan ~——h—'.‘

invokes the Iamer Traffic Controller (IDLE) whick 1lcads an
Idle preocess on the virtual processor.

Tre 1Inner Traffic Controller scnedules virtual
processors on the physical processor. Ready virtual
processors with temporarily bound idle processes (VP #1 and
VP #2 in Figure €) will te scheduled only to give an 1Idle
process away for a supervisor process (i.e., when virtual
preempt flaz is set). The Idle process will a&actually run
when the viriual processor to which it is permarently %ournd
(the Idle-VF in Figure £) is scheduled. This will thavppen
only whern all other VP’s are waiting or temporarily bound to

Idle processes, i.e., when there is no useful work for the

CPJ.

BLOCKEi)

TWO-LEVEL SCHEDULING

READY

\

RUNNING

7\

MEM
MGR
VP

/

LEVEL 2
LEVEL 1
MEM IDLE)
PROCESS PROCESS
WAITING RUNNING

G

VP
#1

AL . A,

CPU

Figure 8

50

2. Non-Tiscretionary Security Module i

The Non-Liscretionary Security module in level-2
reflects the system’s security policy. It compares two
latels, subject and odbject access classses, passed to it by
other modules, and returns the relationship cof the ladels
based on a lattice structure known to it. To perform this 1
function it provides the extended instruction, REIATIOMN,

which is used by the EFvent Manager and the Segment Manager

to determine access permission. These modules makxe decisiorns

about access DbYased on the relationships: equal, less tharn,
greater than, and not related. The Non-discretionary
Security module is the only module which interprets tkhe
| . labels themselves. A different security policy {e.e.,
r Privacy Act vs TOL) can te implemented simply by chaneire
y : the lattice structure used in this module.

4, Zvent Manager Module

The Zvent Manager is a level=-2 module invoked ty
supervisor processes via the gatexeeper. This module creates
a set of extended instructions: ALVANCE, AWAIT, REAT and
TICKET. It determines the access permission o¢f desired
interprocess communications and ottains & glodal harndle from

a Memory Manager data base where event data is stcred. If

access is permitted, the event manager passes this handle,

TR

i . which identifies the event, to the Traffic Controller where
. the appropriate event <count instruction 1is invoked. For

sequencer operations the Memory Manager is invoked directly.

] 51

The use of the handle is necessary because of the decign
cholice to store event data in a data tase of the Memory
Manager ([3]. This 4insures that inter-domain IFC dces not
violate SASS security policy.

5. Segment Manaser Module

The Segment Manager also resides ir level-Z. This
module creates a set of extended instrurtions for
manipulating segments. These 1instructions are: CRFATE,
DELETE, SWAP_IN, SWAP_QOUT, MAKE_ENOWN, and TERMINATE.
Modules of the supervisor domain invoke these instruvctions
to coordinate host support. CREATE and TLELETE add and remove
segrents frcm the system. SWAP_IN and SWAP_OUT cause a
segment to he moved tetween primary and secondary remory
(i.e., tetween & pafed disk and <contigvous memory).
MARZ_KNOWiN and TERMINATE add and remove a segrent from a
process eddress space,

6. Gatekeeper Module

The Gatekeeper exists on the boundéry tetween the
kerrel and supervisor domains. It provides the sole entry
point into the kernel domain, so when the execution point of
a process enters the kernel domain of its address space it
must do so through the Gatekeeper. -

The hardware of the MMU partitions preccess address

spaces into two domains by settinsz the ring number (zero or

one) in each segment’s

attridbute register. Software oprovided by the GCateXeseper

;; performs the following additional functions:

Kernel Enatry
1. Unmaskx EHardware interrupts.
2. Save supervisor domalin registers.

3. Save supervisor stack pointer in kernel stack
segment.

4. Checx arpuments and invcke appropriate Xerael

entry points.
(Virtual machine instructions).

Kernel Exit

1. Invoke TEST_VPREEMPT
(i.e., umnask virtual interrupts).

2. PRestore supervisor domain stack peinter,

3. Restore supervisor domain registers.

1]
*

Unmask hardware interrupts.

5. Return to process execution point in
in supervisor domain.)

This chapter has described the high level desigr of the
Secure Archval Storage System xernel from twc polints of

t . view. In the process view the system is composed of pairs of

supervisor processes (an I/0 Manager and a File Marager) for

each host computer and a pair of Xernel processes (a vemory
Manager and an Idle process) for each real processor in the

system. The supervisor processes provide nigh level services

L ’ to host computers while the kernel processes control system
memory Tresources ard provide ar idle system state. ;

Distributed kernel functions implement two levels of 3

scheduling, provide 1interprocessor synchronizaticn and
cormunication, manare segments, and iscolate and protect the
¥ kernel domain of process address spaces. The distrituted i
f kernel 1is <constructed as a hierarchical virtval rachize. |
Evidence of the versitility of the loop-free, ccnfigvration
} independent struvcture of this desien car bYe observed in
} concurrent thesis work in this a&area [18). An 1Intel <&p286
multiprocessor operatine system implementation, based orn the

same decsign, uses essentially the same virtual inc<turction

set described in this chapter. An implementation c¢f tke
first two levels of this kxernel machine is presented in the

next chapter.

H
’
1
i
,

54

Iv., IMPIEMENTATION

Implementation of the distrituted kernel was simplified
by the hierarchical structure of the design for it permitted
methodical dYottom—up construction of a series of extended
machines. This approach was particularly wuseful 1in this
implementation since the bare machine, the Zepee
Developmental Module, was provided with only a small a&amount

of software support.

A. TEVFILOPMENTAL SUFPORT

A Zilog MCZ Developmental System provide? suppert ir
developine Z6€€€ machine code. It provided floppy diszx file
management, a text editor, a linger and a loader that
created an imagze of each ZE¢€CZ load module.

A 78¢2¢¢ Developmental Module (DM) provided the necessarv
hardware support for operation of a Z8¢€2 ncn-segmented
microprocessor and 18K words (32K bdbytes) of drynamic RAM. It
included a clock, a USART, serial and parallel 1/C svpport,
and a 2Kk PROM monitor.

The monitor provided access to processor repisters and
memory, single step and break point functions, Dbaslec TI/0
functions, and a download/upload capabllity with the MCZ

system.

55

Since a segmented version of tne processor was not

avallable for system development, Seementation hardware was
simulated in software as an MMU 1image {see Figure 93).
Although this data structure did not provide the hardware
support (traps) required to protect segments of the kernel

domain, it preserved the gereral structure of the design.

MMU_IMAGE
OFFSET ATTRIBYUTES
| {eh bytey Low byte Size jAttridutes
seg
#

Fieure 9

B. INNER TRAFFIC CONTROLLER

The Inner Traffic Controller rums on the bare machine to
create & virtpal environment for the reméinder of the
system. Only this module 1is dependent on the ©physical
processor configuration of the system. All higher levels see
only a set of rurning virtual processors. A xernel data

base, the Virtual Procé&ssor Tadle is wused tbtv the Inner

56

Traffic Controller to create the virtual ervironment of this
first 1level extended machine. A source listine of the Inner
Traffic Centroller mecdule is contaired in Agpendiy A.

1, Virtval Frocessor Tadle (VPT)

The VPT is a data structure of arrays and records
that maintains the data used by the Inner Traffic Controller
to rmultiplex virtual processors on a real processor ard to
create the extended instructior set that controls virtusl
processor operation (see Figure 12). There is one tatle for
each physical processor in the systerm. Since this
implementation was for a uniprocessor system (the Z&ecge M),

only one tatle was necessary.

Virtual Processor Tatle

10CK
PUNNING_LIST
PEADY LIST
FREE_LIST

~VP_|DBRy PEI) STATE IPLE FLAG, CFY , NEXT VE , S _IIST
INDEX

'

MSG ' MUSSAGE | SENDER § NEXT MSG
INTEX

Figure 102

57

At SORMEAABIIMNIRRES 15 5. ity e e, el i iaaieie

o e o e . . _ - o I - . - - _ s

The tatle contains a LCCK which suppnrrts an
] A exclusion mechanism for a multiprocessor syster. It was |
| provided in this implementation only to preserve the 1
generality of the design.

The Descriptor Base Register (DER) binds a process

to a virtual processor. Tae DBR points to ar MMU_IMAGE

coataining the list of descriptors for sezments in the

process address space.

A virtual processer (VF) can te in ore of three

states: running, ready, and waiting (figure 11,

Virtual Processor States

a.yrl\' I IIG
VP

14

=y
"
L |
-3

! FIGURE 11

5&

I

et R BRI 2050 S i o e ot Ve i epe e Sasiiie i iavitek O aiibiah i AR

LAk

A running VP is currently scheduled oan a real processor. A4
ready VP is ready to be scheduled when selected ty the
level-1 scheduling aigorithm. A waitineg VF 1is awaitine a
message from scme other VP to place it in the ready list. In
the meantime it is not in contention for the real processor.
2. level-l Scheduling

Virtual processor state changes are ianitiated ty the
inter-virtual-prccessor communication mechanisms, SIGNAL and
WAIT. These 1level-1 1instructions implement the scheduling
policy by determining waat virtual processcr to bind to the
real processor. The actual %inding and unbdbiodine is
perfermed by a Processor switching mechanism called SWAP_DZR
{1¢). Processor switchine implies that somehow the execution
point and address space of & new process are acquired ty the
processor. Care must be taken to insure that the cléd process
is saved and the new process loaded in an orderly manner. A
solution to this prodblem, sugzested by Saltzer [1€], is to
design the switching mechanism so that it 1is a comrmon
procedure having the same segment number in every address
space.

In this implementation & processor register (R14)
was reserved within the switchina mechanism for use as a
DBR. Processor switching was performed bdPy <caving the old

execution point (i.e., processor resisters and flae control

. vy s 3 T S O . R v e B e o o e S0

word), loading the new DBR and then loading the new

execution point. The processor switch occurs at the instant

the DBR 1is changed (see figure 12). Because the switchirg
procedure is distributed in the same numbered seerent in all
address spaces, the "next” instruction &t the instant of the
switch will have the same offset no matter what address
space the processor is in. This is the key to the proper

operation of SWAP_LBR.

SWAP_DBR
Process #1 Process #2
Address space Address cpace
1 1- - _—
Call SWAP_DBR
Save return point
on call stack.
(Preccess #1)
Save execution point .
Swap DRE (R14) ==----=-- S A » Swap DER (R1¢)
. processor
. switch
* Load rew execution
point.
Load return peint
from call stack
(process #2)
Figure 12 *

To cenvert this switching mechanism to segmented
hardware it 1is necessary merely to replace SWAP_TEF with
special I/0 dlcck-move instructions that save the contents
of the ™MMU in the appropriate MMT_IMAGF and 1load the
contents of the new MMU_IMAGZ into tae MMJU.

a, Getwork

SWAP_DBR is contained within an internal Inner
Traffic Controller procedure called GETWORK. In addition to
multiplexing virtual processors on the CPU, GETWORZ
interprets the wvirtual processor status flags, IDLE azd
PREEMPT, and modifies VP scheduvling accordingly in an
attempt to keep the CPU busy doine useful work.

There are actually two classes of idle processes
within the system. One c¢lass belongs to the Traffic
Controller. Conceptually there is & ready level=-2 idle
process for each virtual processor availabtle to the Traffic
Controller for scheduvuling. When a running process tlocks
itself, the Traffic Controller schedules the first ready
process. This will be an 1idle process if no supervisor
processes are in the ready 1list.

The second class of idle process exists in the
kernel. The kernel Idle process is permanently tound tc the

lowest priority virtual processor.

€l

The distinction 1is made between these classes
because of the need to kxeep the CPU busy doirg useful work
whenever possidle. There is no need for GFTWORK to schedule
a level=-2 idle process that has bdeen loaded on & virtual
processor, because the idle process does no useful work. The
virtual processor IDIE_FLAG indicates that a virtual
processcr has been 1loaded with a level-2 1idle gprocess.
GETWORE will schedvle tais virtual prccessor only if the
PREEMPT flae is also set. The PREEMFT flasz is a sienal from
the Traf¢fic Controller that a supervisor process is now
ready to run.

When GETWORYX can find no other ready virtual
processors with IDLE and FREEMPT flaes off, it will select
the virtual processor permanently bound to the kernel - Idle
process. Only then will the Idle process actually run on the
CPU.

Getwork contains two entry poirts. The first, a
normal entry, resets the preempt interrupt return flag. (R?
is reserved for this purpose within GETWORK.) The second, a
hardware interrupt entry point, contains an interrupt
handler which sets the preempt interrupt returr flag. The
DBR (P14) must also be set to the current valve ty azy
procedure that calls GETWORK in order to permit the SWAP_TER

portion of GETWORK to have access to the scheduled process’s

address space. Upon completion of the processor switch,
GETWORK examines the interrupt return flag to determine
whether a normal return or an interrupt return is required.
The hardware interrupt entry point in GETWORK
supports the tecanique used to initialize the system. Eack
process address space contains & ke:nel domain stack segment
used by SWAP-DER ip GETWORX to save and restore YF states.
For the same reason that SWAP-DBR is contained in & system
wide segment numbder, the stack segment 1ir each process
address space will also have the same number (Seprent #1 ir
this implementation). Each stack segment is iritially
created as thoueh it’s process had been previously preempted
by @& hardware interrupt. This greatly. simplifies the
initialization of processes at system generation time. The
details of system initialization will bte descrited later in
this chapter. It 1is importart to note here, nowever, that
GETWORK must be able to determine whether it was invoked by
a hardware preempt interrupt or by a normel call, defore it
can execute & return to the calling procedure. This is
because a hardware interrupt causes three items to te placed
on the system stack: the return location of the caller, the
flag control word, and the 1nierrupt identifier, whereas a

normal call places only the return location on the stack.

Therefore, in order to clean up the stack, GETWCRE rust

. e e e e

a
|

ol heiriaeiitc S’ reaaptiadt arg i duipng

PSS S v ——

~

execute an interrupt return (assemdbly instruction:IRET® {f
entry was via the hardware preempt handler (i.e., P€ set).
This 1imstruction will pop the three items off the stack and
return to the appropriate location. If the interrupt returrn
flag, Re¢, is off, @ normal return is executed.

During normal operation, SWAP-DER manipulates
process stacks to save the old VP state and load the new VP

state. This action proceeds as fcllows (figure 13):

1. The Flag Control Word (FCW), the Stacx Pointer (R15)
and the preempt return flag (R@i are saved in the cld
VF’s kernel stack.

2. The DER (R14) is loaded with the new VP’s LER. This
permits access to the address space of the new process.

3. The Flag Control Word (FCW), the Stack Pointer (215)
and the Interrupt Return Flag (R@), are loaded into the
appropriate CPU reeisters.

is set, GETWORK will execute ar

4, BRC is tested. If it
If it is off, a normal return occurs.

interrupt retura.

A AR

S SRR AR . e a5 ek AR, il ol SO e =

Kernel Stack Segments

0ld VP Stack New VP Stack E
: : i
RET ADDR CPU RFT ADDR SF :
: ~, | rres| T 3 — |
N ’// : e SE :
SF: R15 SP: R15 :
IRET:FQ ‘<\ IRET:R¢
FCW FCW
, EEADER EEADER
f FIGURE 13 - .i
a

By constructing GETWORK 1n this way., Yoth system
initialization and normal operations can be handled 1in the

same way. A high level GETWORK algorithm is giver in figure

14.

3. Yirtual Processor Instruction Set

-~ e

The heart of the SASS scheduline mechanism 1is the
internal procedure, GETWORK. It provides a powerful internal
primitive for wuse by the virtual processors and greatly
simplifies the design of the virtual processor instruction
set, Virtual processor instructions perform three types of

functions: multiprogramming, process management and virtual

interrupts.

GETWORK Procedure (IER = R14)
Beein
Reset Interrupt Return Flag (Re)

Skip hardware preempt handler

X : Eardware Preempt Entry:

3 Set DER

it Save CPU registers

¥ Save supervisor stack pointer
' Set Interrupt Return Flag (RO)

! Get first ready VP

Do while not Select
If Idle flag is set then
if Preempt flag is set then
select
else
2et next ready VP
, end if
1 else
select
end if
end do

SWAP_DER:

Save 0ld VP reegisters in stack seement
Swap dbr (R14)

Load new VP registers in stack seesment

If Interrupt Return Flag is set then
unlocx VPT

simulate GATEKXZEPER exit:

Call TEST_VFREEMPT

Restore supervvisor registers
Restore supervvisor stack pointer

Execute Interrupt Return (IRET)
end {f

Bxecute normal return

end GETWCRK

Figure 14

66

¢ e g R : o 3 g — " »
. '

SIGNAL and WAIT provide synchronization arnd

communication between virtual ©processors. They nmultiplex

virtval processors on & CPU to provide multiprogramming.
This implementation used a version of the sienal and wait
algorithms proposed ty Saltzer [12). Irn the SASS design each
CPU {s oprovided with a unique (fixed) set of virtual
processors. The interaction among virtual processors 1ic a
result of multiprogramming them cn the real precessor. Only
one virtual processor is able to access the VPT at a time
because of the wuse of the VET IOCK (SPIN_LOCK) tc provice
mutual exclusion. Therefore race and deadlock conditions
will not develop and the signal pending switcn used ty

Saltzer is not necessary.

This implementation also included message passing

mechamism not provided by Saltzer. The message slotis

available for wuse by virtual oprocessors are initially
contained in a queue pointed to by FREE-LIST. When a message

i< <ent from one VP to another, a message slot is removed

from the free 1list and placed in a TIIFO messaese queue
belonging to the VP receiving the message. The head of each
VP’s messaee queue 1S pointed to by MSG-LIST. Fach messaze
slot contains a message, tae ID of the sender, and a pointer
to the next message in the 1list (either the free 1list or the

VP message list.

67

'
:
|
!
}

IDLE and SWAP_VDBR provide the Traffic Corctroller

with a means of scheduling processes on tnhe running VF.

SET_VPREEMPT and TIZST_VPREEMPT install a virtual
interrupt mechanism in each virtual processor. "hen the
Traffic Controller determines that a virtual prccessor
should #ive up its process tecause a higher priority process
is now ready, it sets the PREEMPT flag in that VP. Ther,
even if an idle process is loaded on the VP, it will te
scheduled and will be loaded with the first ready process.
Test_VPreempt 1s a virtual interrupt unmasking mecharism
which forces a process to examine the preempt flag each time
it exists from the kernel.

a. Vait

WAIT provides a means for a virtual processor to
move itself from the running state to the waiting state when
it has no more work to do. It is invoXed only for system
events that are always of short duration. It is supported by
three internal Procedures.

SPIN_LOCK enables the running VP to gain control
of the Virtual Processor Table. This procedure 1is only
necessary in a multiprocessor environment. The runnine VP
will have to wéit only a short amount of time to &gaic

control of the VFT. SFIN_LOCK returrs when the VP has locked

the VPT.

68

e

Hoa e gy AN =

e

P

YR gt

T S

GETWORK loads the first eliegidle virtual
processor of the ready list on the real processor. ZEefore
this procedure 1is invoked, the runnine VP is placed in the
ready state. Both ready and runaing YP’s are members of &
FIFO queue. GETWORK selects the first VP in this ready list.
loads it on the CPU, and places it in the runring state.
When GETWORK returns, the first VP of the queue will always
be running and the second will bde the first VF in the ready
queue.

GET_FIRST_MESSAGE returns the first message of
the message 1ist (also managed as a FIFO queue) associated

with the running VP. The action taxen tv 44I™ is &5 follows:

69

WAIT Procedure (Returns: Msg, Sender_IT)

Begin
Lock VPT (call SFPIN_LOCK)
If message list empty (i.e., no work) Then
Move VP from Runrine to Waiting state
Schedule first eligible Ready VP (call GITWCRE)
end 1if
(NOTE: process suspended here until
it receives a signal and i<
selected bu GETWORK.)

Get first message from message list
(call GET_FIRST_MS3G)

Unlock VPT

Return

end WAIT

If the running virtual processor calls WAIT and
there is a messape in its messaege list (placed there when
another VP signaled it) it will get the message and continue
to run., If the messare list is empty it will place itself ir
the wait state, schedule the first ready virtuval processor,
and move it to the runnirg state. The virtual vrocessor will
remain in the waiting state until another running VP sends
it a messase (via SIGNAL). It will then move to the ready
list. Finally it will ©be selected by GETWCRE, the next
instructions of WAIT will be executed, it will receive the
message for which it was waiting, and it will return to the

caller.

7e

R

o o - . . o - s o o 7,) L P . " . L -

b. Slienal
Messages are passed tetween virtual oprocessors

by the instructior, SIGNAL, which uses four i{internal 1

[procedures. SPIN_LCCK, ENTER_MSG_LIST, MAXT_2EALT, and ;

}§ GETWORK,
j; SPIN_LOCK, as explained above insures that only E
ore virtual processor has control of the 7Virtual Processor
Table at a time.

ENTER_MSG_LIST manages & FIFO messege queue for
each virtual Processor and for free messares. ThiS queue 1is
of fired maximum length Ddecause of the implementation
decision tc restrict the use of SIGMAL. A rurnirg 7F can
send no more than ore message (SIGNAL) bYefore it receives a
i reply (i.e., WAIT s for a message). Therefore if there are N

virtval processors per real processors, the message queue
i length, L, is:
: L =N-1
MAKE_READY me .ges the virtual processor ready
queue. If a message is sent to a VP in the waitine .state.
MAKE_READY wakes it up (it places it in the ready state) and
‘ enters it in the ready 1list. If & runnlng VP sigrnals a
] waiting VP of higher priority, it will place itself tack in
' the ready state and the higher priority VP will bde selected.

The action taken dy signal is as follows:

71

o el D T R N e L

SIGNAL Procedure (Message, Testination_VF)
begir

Lock VET (call SPIN_LOCK)

Send message (call ENTER_MSG_LIST)

If siznaled VP is waltiane Then

Wake it up and make it ready

{cali MAXE_READY)

end if
Fut running VP in ready state.

Schedule first elzgible ready VP
(call GETWORK)

Urlock VPT
Retura (Success_code)

Ind SIGNAL

c. SWAF_VIDB?

SWAP_VILBF contains the same processor switchiae
mechanism used in SWAP_DBR, tut applies it to a virtual
processor rather than a real processor. Switchice is quite
simple in this virtual environment becauses doth processor
execution point and address space are defined by the
Descriptor Base Register. SWAP_VI3R 1is invokxed tv the
Traffic Controller to 1load a new process o0& a virtual
processor in support of level-2 scheduling. It uses GETWORK
to control the associated level-l scheduline. The action

taken by SWAP_VDER is:

SWAF_VDBR Procedure (New_DER)
Fegin
Lock VET (call SPIN_IOCK)
Load running VP with New_LZER
Flace running VP {n ready state

Schedule first eligidle ready VP
(call GETWORK)

Unlock VPT
Return

End SWAP_VDER

In this implementation one restriction is placed
upcn the use of this instruction. If a virtual crocessor’s

message list contains at least one message, it can rot give

up its current DER. This probdlem {s aveided as the natural
recult of using SIGNAL and WAIT only for system events, ané
“"masking” preempts within tne kermel. If this were
permitted, the messages would lose their context. (The
messages in a VP_MSG_LIST are actually 1intended for thae
process loaded on the VP.)

d. IDLE

The IDLE 4instruction loads the Idle TEIP on the
?, running virtual processor. Only virtual oprocessors in

contention for process Scheduling will te loaded bdy this

|
{
g) instruction., (The Traffic
3
§

Controller 1is rot even aware of virtual prccessors

permanently bound to kernel processes.)

ICIE hes the same scheduling effect as
SWAP_VDBR, dbut it also sets the IDLE_FILAG on the scheduled
VP. The distincticn is made betweer the Two cases decause,
although the Traffic Controller must schedule an Idle
process on the VP if there are no other ready processes, the
Inper Traffic Controller does not wish to schedule an Idle
VP 1¢ there is an alternative. This would Ye a waste of
physical processor resources. The setting of the IDLE_FLAG
by the Traffic Controller aids the Inner Traffic Centroller
in makine this scheduling decision. Logically, there is an
idle process for each VP; actually the same address space
(DBR) is used for all idle processes for the same CPU, since
only one will run at & time. As previously exgplaired,
virtual processors 1loaded by this instruction will te
selected by GETWORK only to give the Idle process away fcr a
new process in response to a virtval preempt interrupt. The

action of IDLE is:

74

e a o ata . . R - T T i A AR

e e L et o PATT P R PP B A S

Ay BB e

-

IDLY Procedure

Beein

I lock VPT (call SPIN_LOCE)
|

|

|

load running VP with Idle DZER

et A

! Set VP’s ILLE_FLAG
! Place running VP in ready state

Schedule first elgible readvy VP
(call GETWORK)]

Unlock VPT
Return

End IDLE

e. SET_VPREEMPT
SET_VPREZEMPT sets the preempt interrupt flag on

R v

a specified virtual processor. This forces the virtual
processor into level-l scheduling contention, even if it is
i loaded with an Idle process. The instruction retrieves an

idle virtual processor in the same way a hardware preempt

. w e

» retrieves an 1idle CPU by forcine the VP to be selected by

GETWORK. The only difference between the two cases 1is the
entry point used in GFTWORK. The action of SET_VFREEMPT is:

H o %
% 75 3

SET_VPREEMFT Procedure (VP!

Begin

Set VP’s PREEMPT flag

If VP belones to another CPU Then
send hardware interrupt

end 1if

Feturn

End SET_VPREEMPT

Since the actiocn 1is a safe sequence., LO
deadlocks or race conditions will arise and no 1lock Iis
required on the VFT.

f. TEST_VPREEMPT

Within the kernel of a multiprocessor system all
process interrupts (which excludes system I[/0 interrupts)
are masked. If process interaction results in a virtual
preempt teing sent to the running virtval processor by
another CPU, it will not bYbe handled since ETWCRY ras
already bYeen 1invoked. TEST_VFREEMPT provides a wvirtual
preempt interrupt unmasking mechanism.

TEST_VPREEMPT mimics the action of & physical
CPJ when interrupts are unmasked. It forces the process
execution point back down into the kernel each time the
process attempts to leave the kernel domain, where the

preempt flag of the running VP is examined. If the flag 1is

off, TEST_VPREEMPT returns and the execution point exits
through the Gatekeeper into the supervisor domain of the

process address space as descrided adbove. However, if the

PREEMPT flar is on, the TEST_VPRETEMPT executes & virtuel

e TR,

interrupt handler 1located in the Traffic Controller. This

jump from the Inper Traffic Controller to the Traffic

Controller (TC_PREZEMPT_FANDLER) 1is a close parallel to the
E; action of a CPU7 in response to & hardware interrupt, thkat is
! a jurp to an {interrupt handler., The Traffic Cortroller
Preempt Fandler forces level-2 and level-1 scheduling to

proceed in the normal manner. The preempt handler forces the

g Traffic Controller to examine the APT and to applv the ’

o level=2 scheduling algorithm, TC _GETVORK. 1If the AFT has
' been changed since the last invocation of this scheduvler, it
will be reflected in the scheduling selections. ZIventually,
when the running VP’s preempt flag is tested and found to te
reset, TEST_VPREEMPT will return to the Gatekeeper where the
process execution point will finally make & normal exit into

its supervisor domain. TEST VFRZEMPT performs the following

action:

ik 2 o e T o

TEST_VFREEMFT Procedure

Begin

Do while running VP”s PREEMPT flae is set

Peset PREEVMPT flag

Call preempt handler
(call TC_PREEMPT_HANDLER)
Tnd do
Return

End TEST_VEREEMET

C. TRAFFIC CONTROLLFR

The Traffic Controller runs in a virtual envirourent

created by the Inner Traffic Controller. It sees & set of

e Sk i s

running virtual processor instructions: SWAF_VIER, ICLE,

SET_VPREE¥PT, and FRUNNING_VP, and provides & scheduler,

TC_GETWORK, which multivlexes processes on virtual

lso

[e1)

processors in response to process interaction. It

creates a level-2 instruction set: ADVANCE, AWJAIT, and 1

i e ey

PROCESS_CLASS, which 1s available for use by higher levels !
of the design. The Traffic Controller uses a global data

base, the ACTIVE PROCESS TABLE to support its operation.

1. Active Frocess Table (APT)

The Active Process Tatle is a system-wide kernel

1 database containing entries for each supervvisor process in

SASS (Figure 15). It is indexed by active process IT.

7e

s O RN 9 DI RN O . s e R Sk e - S o s a e B - 3 i “

_? Actlive Process Table
LOCK

m—

i RGNNING_LIST PROCESS_ID

VP_ID
\

K. s i
SADY_LIST_HEAD

DER ACCESS _CLASS , STATE NEXT_AP , SVENTCCUNT

PANTIZ
INSTANCE
COUNT
AP
Index 3

R
-

Figure 15

The structure of the APT <closely parallels that of the

Virtual ~Processor Tabdle. It contains a LOCK to support the

implementation of a mutual exclusion mecharism, a
RUNNING_LIST, and a READY_LISf_HEAD. The Traffic Centroller
is onlv concerned with virtual processors that can te loa&ded
with supervisor processes. Since two VP’s are permapently
bound to kernel processes (the Memory Manager and the Idle
Process), they cannot bYe in contention for level-=2
scheduline; the Traffic Controller is unaware of their j
existencej; since there are a gaumder of availadble virtual

processors, the RUNNING_LIST was implemented as an array

indexed by VP_ID. The READY_LIST_HEAD points to a FIFO queue

79

that includes bdoth running and ready processes. The rurning
processes will be at the top of the ready list.
Because of their completely static nature, idle

processes require no entries in the APT. Logically, there {s

o} }

an idle process at the end of the ready 1list for eachk 7V

availadble to the Traffic Controller. If the ready list |

w

empty, TC_GETYORK loads one of these 'virtual® idle
processes by calling IDLE, and enters a reserved identifier,
#I1DLE, in the appropriate RUNNING_LIST entry. TRhis
identifier is the only data concerning idle processes that
is contained in the APT. Idle process scheduling
considerations are moved down to level-1, btecause the Inner
Traffic Controller knows adout physical processcrs, and can
optimize CPU use by scheduling 1idle processes only Wwhern
there is nething else to do.

The subject access class, S_CLASS, provides each
process with a label that is required by level~2 modules to
enforce, the SASS non-discretionary security policy.

2. level-2 Scheduling

Above the Traffic Controller, SASS appears as 3
collection of processes in one of the three states: rurning,
ready, or blocked. Running and ready states are analosous to
the corresponding virtual processor states of the Inner

Traffic Controller. Eowever, because of the use of

50

. SR L Tt o

g Rt A 35 v T SV P

paiapirgihidoduii sib-svmad

eventcount synchronization mechanisms bty the Traffic

3§ Controller, the blocked state has a slightly different

%i connotation than the VP waiting state.

| Blocked processes are waiting for the occurrence of
4 non-syster event, e.g., the event occurrence ray bde
slgnalled from the supervisor domain. When & specific event
happens, all of the bdlocked processes that were awaitirce
that event are awakened and placed in the ready state. This
broadcast feature of event! occurrence is more powerful than
the messapge passing mechanism of SIGNAL, which must te

‘ directed at a single recipient.

Just as SIGNAL and WAIT provide virtual processor
multiplixine in level-1, the eventcount functions, ALVANCE
and AWAIT, con}rol process scheduling in level-2,.

a. TC_GEITWORK

level=2 schedvling is impiemented in the
internal Traffic Controller procedure, TC_GETWORK. This
procedure 1is invoked by eventcount functions when a process
state change may have occurred. It 1loads the first ready
process on the currently scheduled VP (i.e., the virtual
processor that has YbYeen scheduled at level-1 anéd is

currently executing on the CPU).

T m—— v r— o ’ v " L [

TC_GETWORK Procedure

Feein
VP_ID := RUNNING_VP
Do while not end of ready list
if process is running then
get next ready process
else
RONNING_LIST [VP_IT] := PROCESS_IT
Process state := running
SWAP_VDER

end i¥f
end do

If end of runnine 1ist (no ready processes) Thken
RUNNING_LIST := #IDLE)
IDLE
end if
Feturn 4

Tnd TC_GETWORK

A source 1listing of TC_GETWORK is contaired in

Appendix E.
b. TC_PREEMPT_EANDLER

Preempt interrupts are masked while a process is
executing in the kernel domain. As the process leaves tne
kernel, the gatekeeper unmasks this virtual irnterrupt ty
invoking TEST_V"REEMPT. This inmstruction tests the scheduled
VP’s PREEMPT flag. If this flag is off, the process retursas
to the Gatekeeper and exits from the kxernel; tut if the flag

is set, TEST_VPREEMPT calls the Traffic Controller’s virtual

preempt interrupt handler, TC_PREEMPT_EANDLER. This handler

invokes TC_GETWORK, which re-evaluates 1level-2 <cheduling.
Eventually, when the schedulers have completed their
functions, the handler will return control to the preempted
process, which will return to te Gatekeeper for a normal
exit. This sequence of events closely parallels the action
of a hardware interrupt, but in the environment of a virtual
processor rather than a CPU. The wvirtualization of
interrupts provides the ability for one virtual processor to
interrupt execution of another that may, or may not, be
running on a CPU at that time. This is provided without
disrﬁptine the logsical structure of the system. This
capability is particularly useful in a multiprocessor
environment where the target virtual oprocessor iy te
executing on another CPU, 3ecause these interrupts will te
virtualized, the operating system will retain control of the
system. The action of the TC_PREEMPT_HANDLER is descrited in
the procedure below. A source 1listine is coxntained in

Appendix B.

83

T o ST e 1

TC_PREEMPT_HANDLER Procedure
RBegin
Call WAIT_LOCK
VYP_ID := RUNNING_VP
Process_ID := RUNNING LIST (VF_ID]
If process is not idle Then
Process state := ready
end 1if
Call TC_GETWORK
Call WAIT_UNLOCK
STURN
End TC_PREEMPT_HANDLZER

WAIT_LOCK and WAIT_UNLOCK provide arn exclusion
mechanism which prevents simultaneous multiple use of the
APT in a multiprocessor configuration. This mechanism
invokes WAIT and SIGNAL of the Inmer Traffic Controller.

3. Eventcounts

An eventcount 1is a non-decreasing inteeer
associated with a globdal object called an event [11]. The
Event Manager, a level-3 module, controls access to event
data when required and provides the Traffic Controller with
a HANDLE, an INSTANCE, and a COUNT. The values for all
eventcounts (and sequencers) are maintained at the Mermory
Manager level and are accessed by calls to the Merory

Manager. The HANDLE provides the traffic controller with an

E4

event ID, associated with a particular segment. INSTANCE s

a more specific definition of the event. For example, each
SASS supervisor segment has two eventcounts associated with
it, a INSTANCE_1 and a INSTANCE_2, that the supervisor uses
keep track of read and write access to the seement [2].
Eventcounts provide information <concerning system-wide
events. They are manipulated by the Traffic Controller
functions ADVANCE and AWAIT and by the Memory Manager
functions, READ and TICXZET. A proposed high level design for
ADVANCE and AWAIT is provided in Apperndix C.
a. Advance

ATVANCE signals the occurrence of an event
(e.g., a read access to a particular supervisor segment).
The value of the eventcount {s the number of ALVANCE
operations that have been performed on it, When an event is
advanced, the fact must be ©broadcast to all tlocked
processes awalting it and the process must be awakened and
placed on the ready 1list. Some of the newly awakened
processes may have a higher priority than some of the
running processes. In this case a virtual preerpt,

SET_VPREEMPT (VP_ID), must be sent to the virtual processors

loaded with these lower priority processes.

b. Await
When a process desired to block itself until
a particular event occurs, it invokes AWAIT. This procedure
returns to the calline process when a specified eventcount
is reached. Its function is similar to WAIT.
c. Read
REAT returns the current value of the
eventcount., This is an Event Manager (level three) function.
This module calls the Memory Maneger module to ottain the
eventcount value.
d. Ticket
TICKET provides & complete time-ordering of
possibly concurrent events. It uses a rnon-decreasing
integer, called a sequencer, which is &also associated with
each supervisor segment. As with RZAD, this 1is an ZEvent
Manager function that calls the Memory Man&ager to access the
sequencer value. Each {invocation of TICXET increments the
value of the sequencer and returns it to the caller. Two
different uses of ticket will return two different values,

corresponding to the order in which the calls were made.

D. SYSTEM INITIALIZATION

Eecause the Imnner Traffic Controller’s scheduler,

GETWORK, can accommodate both normal calls and hardware

£6

interrupt jumps, the probdlem of system initialization is not

difficult.

when SASS is first started at level-1, the Idle VP is
running and the memory manager VP, which has the highest
priority, is the first ready virtual preccessor in the ready
list. All VP’s availadble to the Traffic Controller for
level-2 schedling are ready. Their IDLE_FLAG's ard PREEMFT
flags are set.

At level-2, all VP’s are loaded with idle processes and
all supervisor processes are ready.

The kernel stack segmeant of each process is initialized
to appear as if it had been saved by a hardware Preempt

interrupt (Figure 16).

Initialized Stack

Stack Segment
SP ~~———p| sup sStack ptr |

int ID

sup FCW

—9 process entry
stack base

ker stack ptr
IRET FLAG
i
ker FCW

header

Figure 16

All CPU registers and the supervisor stack polinter are
stored on the stack. R15 is reserved as the kernel stack
point; R14 contains the DBR. All other registers can be used
to pass initial parameters to the process. The order in
vhich these registers appear on the stack supports the Z/ASM
block-move imstructions.

The status block contains the current value of the stack
pointer, RiS, and the preempt interrupt return flag. This

flag is set to indicate that the process has deen saved by a

8e

preempt interrupt. The first three items on the stack: the
process entry point, the initial process flag control word,
and an {irnterrupt {ndentifier, are also iritialized to
support the action of a hardware ianterrupt.

To start-up the system, Ri4 (the DBR) is set to the Idle
process DBR} the CPU Program counter is assigned the
PREEMPT_ENTRY point in GETWORK; the CPU Flag Control Word
(FCW) 1s 1initialized for the kernel domain; and the CFU is
started. Fecause the Idle_VP is the lowest priority. YP in
the system, it will place itself dback in the ready state and
move the Memory Manager 1in the rurnning state. The Memory
Manager will execute an interrupt retura Ddecause the
interrupt return flag was set by system initialization.
There will be no Work for this kxernel process so it will
call WAIT to place 1itself in the waiting state. The next
ready VP is i14ling, but since it’s IDLE_FIAG and PREEMPT
flag are set, GETWORK will select it. It too will execute an
fnterrupt return, but Ybecause its PREEMPT flag is set, it
will call TC_PREEMPT_HANDLER. This will cause the first
ready process to be scheduled. Each time a supervisor
process bdblocks itself, the next idle VP will be selected and
the sequence will bde repeated.

The action described above 1is im accord with normal

operation of the system. The only wunique £features of

initialization are the entry point (PIEEMPT-ENTRY: in
GETWORK) and the values in the initialized kernel stack.

The implementation presented in this thesis has been run
on a Z20200 developvmental module. System initialization has
been tested and executes correctly. At the current level of
implementation, no process multiplexing function {is
available. There i{s no provision for unlocking the APT after
an initialized process has been loaded as & result, a call
to the Traffic Centorller (viz., ADVANCE or AWAIT). In a
process multiplexed environment this would cause a system
deadlock. Once the process left the kernel domair with a
locked APT, no process would bde able to wunlock 1it. The
Traffic Controller must handle this syster initialization

prodler.

se

O PR RARIP

V. CONCLUSION

The implementation presented in this thesis created a
security kerrel monitor that runs on the Z£¢«€ Tevelopmental
Module. This monitor supports multiprogramming and gprccess
management in a distridbuted operatinez system. The process
executes in a multiple virtual processcr environrert which
is independent . of the CPU configuration.

This monitor was designed specifically to support the
Secure Archival Storase System (SASS) [1, 2, 3). Eowever,
the implementation is based on a family of Operating Systems
(4] desiened with a primary goal of providire multilevel
security of information. Althoughk the moaitor currently runs
on & sinegle microprocessor system, the implementaticn fully

cupports a multiprocessor design.

A. RZCOMMENDATIONS

Pecause the Zilog MMU is not yet availatle for the Z&€:c@
Levelopmental Module, it was necesary to simulate the
segmentation hardware. As explained in Chapter IV, this was
accomplished by reserving a CPU register, Rl4, as a
Descriptor Base Register (DER) to oprovide a link to the
loaded addresss space., When the MMU becemes availadle, this

simulation must bve removed. This can te dore in two steps,

Al

91

evte 0 1o

First, the addressing format must be trarslated to the
sezmented form. This requires no system redesien.

Second, the switching mechanism most be modified to
accorodated to use the MMU., This can be done by modifyine
the SWAP_DBR portion of GETWORK to multiplex the MMU_IMAGE
onto the MMU hardware and this can be accomplished by

changing adtout & dozen lines of the existing code.

B. TFOILLOW ON WORK

Although the monitor appears to execute correctly, it
has not been rigorously tested. Before higher levels of the
system are added, it is essential that the monitor te highly
reliahle. Therefcre a formal test and evaluation plan shceculd
te developed.

ir automated system generaticn and initialization
mechanism 1s also required if the monitor to be is a useful
tool in the development of higher levels of the design.

Once the monitor has been proven reliable and can be
loaded easily, work on the 1implementation of the Vemory
Manager kernel process and the remainder of the kernel can

continue.

82

82

_) 9 =: gouyd XAANI dA u2

1 X1dW3 ION ISIT OSW 1 G =2 GIMOTIV_LON JVAS 92

$ =t MOTIHIAO ISIT DSW G2

e = A1dWI 1SIT XQViH | £

S =: JoU¥d ISIT_ISW 1574

T =: X1dWE LSIT OSW rA4

8 =3 Y001 dINVNQ | ¢4

b ogesottpuadiesse STA0D HOHUT segedoqoiopsiesen | /T4

- JNVLISNOD 61

ax (TTAT 9 ‘HIAA dVAS SIIVA *95IS) HAIIWVYVd IAINI SV 81

¥14 :§ed SSVd JHOALIH ONITIVD) STUNAIDIOHd JLI TTIV °d FA S

‘(@4 30 YOUYT NV ONINUNLIY) WILSAS HSVHD TTIM ANV 91

SNOTLIGNO) HOHET aIWIAISNOD IV SNOLILOAULSNT ANIHOVW Gt

< TVAIMIA 40 SNOILVIOIA TIV °V ¥l

_ TTVHANED 2 et

o] *(XMINT "1dWIT¥d) YITANVE 1dNYYAINI 21

m LdWitdd THL X9 ANV YHOALID ONITIVD TYnqIO0Ud 1t

X 931 INV X4 ¥d4q IRL SV QIBSITEVLSE SI 934 SIHL at

8 (0WW) TUVAQEVE THL NO TTAVIIVAV IE ITTIVOINTAZ TTIA

< BOIHA OANI ONIIVINWNS HILIWVHVL INdNI SI PTH °€

*(4I4TTRALVO L0 NOIZONAL SIHAL)
+gH3Y ANV TAVS LON STOd XUINI TVWHON °V
:XUOALTD ° 1
$ALON wx |
I % % % ¥°T7 *SUTA % = » |

NHODO-DON

FINAOW TOHINOD DIIIVHI HANNI T

INIWILVLIS TDUAO0S LWLS @09 rdo 201
28°2 WSveooesZ

X . 29vdi 1S
828VY =: ¥ATONVH 1dWITYd 01 s
m i X4INT ONEE | @O6VX =: HOLINOW . 6%
TEAIY =* QITVANI 8%
33a% = TIN 4P
2 =% ONILIVA oF |
w T = Xqviy 14 i
@ =: ONINNNY 44 ;
8 =: 440 £¥ ;
X833 =: NO 2% 3
. 1% ;
OTX-IZIS DIS_IIVIS =: . d'S™N ov !
ITX-AZIS DAS_AIVIS = a1 ssiIyodd 62 {
@2%-I71S 9IS_YIVIS =: _ _ A0 8c i
e¥%-321S H4S_JIVIS =:X00T4 94 SALVLS 2€ ;
o¥%-IZIS 9IS IOVES = asve XOVLS 9¢
I % & 9%S YOVIS NI SIISAIO0 » » | 3
@8T% =: FZI1S 9AS_JOVIS ¥C
1=t 93S "JOVLS ce
T-dA HN =3 dr T7a1 2¢
v o=: _ dA _uN ¢
ISTYOR ONOTI %9 = 9Y "NWW EN oc
I ottt mmmangz HILSKS satetetetetene | 62

L L4
(q40A *S] LvVHHY T 431114 92 ‘
YIANI "9SW . ISIT 9SW 72
XIANI dA dA XQVAE LXAN 2 :
d4OM 40SSTIOHd "SIHd £L .q
auom LdWIT8d 2L
quoA OVId 101 14 ,
auom qLYLS 0L 1
TYOA 14d _ 69
$STYAQV ¥eq) ay003y ITa¥L dA 89
49 w
{ 99 @
[a¥oA *G) xvH¥v Y3111 S9
XIANT 9SW 9SW LXAN %9
YIINI dA dIANTS) €9
IOV SSTW 9SW) q¥0934 ATEYLI HSW 29
19
L 29
qyoa SALNEIYLLV . 6G
SSTYAQAY dSvd] quoddy ITAVI AWW 8S
LS
WIDIINT XYIANI “9SW 96
YTHALNT XIANIdA GG w
aQHOA $SAYAAV %G :
THOM FOVSSIW €6 :
2dIL 26 .

A AU o 1L S B e

AD-AQ91 092 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 9/2
AN IMPLEMENTATION OF MULTIPROGRAMMING AND PROCESS MANAGEMENT FO=-ETC (V)

JUN 80 S L REITZ
UNCLASSIFIED

NL
[|

B2 2
o
i

36
—

s Jji2.0

o
E

TEREE

FFPD

e -
=
| X P

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

|

[ITEVI OSSN *dA_UN] IVHHY
[379VL dA *dA UN] ZvyHv
(quom ‘¥] xvHuv

X4ANI 9SW

XTANI _dA

YIANI dA ISIT ONINNNYE

QyoA

: Tovdi
O oSKH
_ dA
2 uar11d
ISIT a3ud
LSI1 1qvan
1001)
q¥023Id LdA
VIVA NOILJ3SS
TVNYILINI

26
68
88
.8
98
S8
14:)
e8
28
18
a8
6L
84

96

0000

ke NS e o b

. um,v,:.“

/T

YITANVY LIWITHd QN3 ar 611 4184 0000
] UITANVH LdWTTYd JIXS | 81T
L1T
(X3014 umm-mba<amtv¢m ‘cy va1i ottt 0320 G¥ve 8000
(P%DTS JOVISH)PTY °*PY a1 G11 300 $IATC 9930
1 3Svd I0VLS 139 i , Mm“
) _ ddo# ‘ou a1 2t 2000 2212 0002 ;
I 9vId NYNLIY LdWITYd 40 NUAL 1Tt H
14N BT |
§ steteste sl ole et oo s el st e e et e e e sl ook | 691 ;
I YIINIOd IIVIS_TVWHON :9¥ } 8ot :
I ¥aav 30014 93y m:adam Gy i L0t :
1 8AAV ISvd HIS JJOVIS %y i 901 P !
| quoA TOUINOD HVIL :¢C¥ I Got :
i (Q10) dA INTFHHND 22¥ %ot :
| (MAN) 4A XQVIY *1H i cot M
i :SITAVINVA TVIOT | 201 i
i YIINIOL JOVIS :GTY i 101 3
I (NOILIVINAIS) ¥HEqQ :%1H i 291
] DVIZ NINITH LJINUUIALNI ¥ | 66 i
i SYILSIoVAY SNLVIS i 86 3
i :94S0 YILSIHIY | L6 s
§ o a0 o e s e s o e e e o e o e oo e o e s sl e e o 96
i *40SSIO0Ud TVOISAHA NO i G6
I SY0SSAIOUS TVALYIA SAVAS | ¥6
1 e s e s s e e oo oo e e s e e oo e sl e stete e § €6
IYNAIO0Ud JYOALID 26 0020

:) 9084 INI NOILOdAS$ 16

1 "NOISYNOIY I0 PFidIA INV OL GINIVINIVW 9%1
SI SHILSIDIY SNALVLS ASTHL 40 IXTINOD SHI S¥1
JOVIS AL NO (B 5 STH) SOVIL JIUI QNV 1
dS INI0Z4 LSOW FHL ONIAVS X °JYOALID OL eF1
STIV) AISUNDIY ITANVE Ol XHVSSIDAN SI Il 2%t
TYTARANY QILJWITEd T4 KVD SISSAIOUd TONIS I ION 1 182
| SHIY SNIVLS LSVT ZAVS | o%1
651
9¥ ‘STHO ASNd 8t 946 92232 ©
dSN *9¥ 11041 Le1 490 %200 o

i (dSN) MIINIOA AOVIS TVWHON IAVS | 9¢t
set

9T# ‘TH ‘STHO WQ1T ¥el 4010 6401 0200

2e# ‘CTH 4NS ect 2200 i0C0 J100
| SUILSIOHAY TIV TAVS | 2et
1e1

1000 V100

IQVIE# *(2U)AIVIS dA‘LdA Q1 oSt ,¥120 G2a¥ 9192
| SLVLS XQVIY NT SSADOMd INZYYND Ind 1| mwﬁ

ﬂ (2¥)WEA dA 1A ‘PTH QT L2t ,3100 3219 2100

| ISIT ONINNOU'LdA ‘28 (1 921 ,200¢ 2819 %000
1§40 13S i 621
- ¥21
I % » UITONVH LAWIZUd = » | nmﬁ
22

! 134VT IVEOTD | $AHINT 1dWIT™d 12t

ao
}) ey ‘TH a1
(T¥)dA XAVIE IXAN°JA°LdA °‘CH a1
| dA"XQVEY LXAN 13D |

14
dATL0TT4S woud IIXT
i 1701 ION dA § 3S1d
14
dA"10374S wWoud 1Ix3
I NO SI IJNUUIINI 1dWIddd § 0T dI

NO# *(TH)1dWITAd °dA°IdA 4D
NIRL & I7dI SI dA 1 OF i1

NO# ‘(TH)DVTIL TTAT*EA° L4A {4

I ANNOA dA XQVE¥ FTEIDTIT TIING | 0O
tdA LDAT3S

ISIT XQVIY°LdA_‘TH a1
I LSIT dA x@vad 139 1

SUITANVE LdWIATU QNI

I % & & o% % & & &% % % ok & % |
NO# ‘oM an
1 OVIZ NEN1L3® LAOWHIALNI 13S |

8Y ‘STHO HSNd

24 ‘Yo #sSnd

. 2# ‘GHY ‘LY WaT

i SDIY SSALVLIS LSVT IAVS 1

15122 ¢
28t
181
281
641
T ¢
LLt
941
Sat
ot
15T
2Lt

Tt
JA

€91
89T
491
991
got
91
€91
29t
191
091
6G1
8st
48T
961
Gst
%G1
€St
eSt
161

,0130

.89090
. 9900

.8900
.8600

,8100
. I500

,9100

. ¥320

reee

1242

2383
|44
154 94°)

80dS
20 dc

80dS
03¢
d44d
11a%
d03S
i3dd
110y

1319

eote

84¢€6
2i¢6
1601

9900
¥oeo
3999

600
8500

¥G00 .
2Gee-
a¥23
V%00
9%00
900
ov00

J2093 .

8C00

9£00:
vcoe
2200

¥

- A R A

T YRRy Y - —yr—

Ay ”ggﬂ?wtﬂﬁégi TRV

. 2# ‘cue ‘cud Wa1i G12 1840 1IGOT

(30074 53 SOLVLISH#)%Y ‘GY va1 912 8300 GC¥%¥S

(F20TS JIVIS#)PTH ‘%Y a1 e12 Y000 ¥IIC
I 9VId 138 IJNUUIINI 9 d4S dA MIN AVOT | 212
112

(T4)4da dA°1dA *¥1Y a1 212 L0100 %119
i 4da dVAS i 602
_ 822

T4 ‘LSIT ONINNNY®LdA a1 02 ,2000 1049

0000

ONINNQU# *(TH)ILVIS*dA°LdA a1 992 ,¥103 Stad
] ILVLIS ONINNNY NI JA MAN FIVId S02
o2

ey ‘(A0 an)%u a1 ({74 9300 c£¥ce

ROE ‘ed 11941 2ee 2eaL
I » » A3 AVS & = 102
202

2# ‘GTH ‘CHO WaT 66T 10de 650t
g6l
I *0OWW THY Ol SNOIIONWISNI L61
0/1 TV103dS 1€ QIIVIdI¥ 34 TTIIA SNOILONUISNI 961
@v0T ANV FAVS d0 SAIHES SIHL TTAVIIVAV SI G6t
FUVAQUVH NWW NIHM °THIH 4@ SV qIsn SI T :IION | ¥61
I » » OVId NENITE LINUUIINI ANV dS FAVS # = | _ c61
:4dq dVAS mm“
i “LdNYMILNT JUVAQUVRE V ONIATIOIM TILNA NOW TTIA P61
Il *Q@310QIAIS AONO °LSIT 1AVI¥ THI 681
NO S,dA ¥IBIO ON FUv TUFHL A1 ¥O HNITGI 8981
44V S,dA Xaviy MIRIO0 11V LI XINO NAY TTIA LI .81
*$SIT JAL WOUL JIAOWIH 34 HIAIN TTIA 981
‘dA 14d ISTA0T THL SI HOIWA ‘dA 2101 AL 18
dONIS XIdWT 39 YIAIN TTIA ISIT 1AVAY IHL :IION $81

e - e T ——

P S P DS e Y T ——— e e —
: - SR eSS & o - Cao s s oy : I ST

- e L e Y v b ST 1 gt S

e

8800
¥300
esee

JL00

8L00
9400
cLo9

4909
0900

8900

100

- "‘-M!" “

9¥ ‘dSN 13041
St499 ‘94 dod
i dSN THOLSTY 1

2¢ ‘20 ‘GHO WAT

STHO ‘44 dod

) STH® ‘B dod

i $9YE SNIVIS ISVI T90LSAY |

LdWIIYd LSIAL TIVD

i *0STvV 3¥3H AITIAONd

44 LSOW SLdWITY¥d TTANVH OL LIXY LIV V 18

AIAIA0Ud SNOILONAI TSOHL ‘ILVH AL HONOWH]L
J4L IIXT JON S30T IJAMYIINI FYVAQUVE V JONIS 3LION i
! LdWIT¥d ¥0d ISTAL 1

IJ)0T°LdA HTI
I &dA JOOING §

I NUOLTY LJAYUIINT IdIWITHd INVAQUVH |
NIHL | NUQLTY LdWITHd § 03 41
NO# ‘DY 40
| JANUYIINI TFVAAQEVA HOL 1S3 i

_ . e ‘mOi 13041
(RO I#)%Y ‘cH a1
1 = =« ADd AEN AVOT % = 1§

13 £
e¥e
92
o%e
6g2
B8ee
(A4
2304
see
vee
gee
cee
1€2
eee
622
82¢
422
92e
Ggee
vee
44
22
122
44
612
-] ¢4
Lt12

10L0

.c810

. 0000

., 2429
4341

Veas
% 4 8%

0600
800

LA AV

PR AT M e

N

JUOALID aNT
14
13Y
i NEALTY TYWHON § ISTX

134l
| NUNIZY IANYHIINI IUVAQYVH IINDTXI |

2e# ‘GTH aav
9T# °‘G1¥0 ‘TH Wa1
| SYILSHIY TIV TYOLSIY |

IIvdi 962
Ggee
yce
151°14
a2se
162
062
6%
8%2
'A &4
9ve
1°3 &4
¥¥e

., 1900

2200
d010

1109

8036 04080
8235 8400

Pods 9400

4010 24900
1401 3Vvo0

i e ke G

_ %Y °*LSIT 3TUA°LdA
(SH)OSW LXAND OSW°LdA °*+Y

1 %« » & ONEIq ANT % = *um
- YOLINOW TIVD
AOTIYTAO ISIT DSW# ‘eM a1
$ ‘18 va1

NTIHL 03 41

TIN# ‘€Y 40

I % &% & % ONGIQ % % »x % |

LSIT 3q44°31dA ‘€U a1
1 1SIT 134d WOHI HSW LSHIZ 139 |

ISIT ONINNNY°IdA °*2¥ a1
IHINT
§ el ot seote o e e e e e sl o s seate e o e el e e s e |
OSW b INTISTUL 94 i
DSH O_LYAN :GY §
OSW ITUL IXAN : vy |
OSH ITYL IS¥Id :¢¥ |
dA INTHHUND 24 i
$SITIVIHVA TVIO0T |
(INdNI) dA QITVNDIS 1Y i
(LNdNTI) 9SW:od i
$SHALAWVHYVL |
tdsSn YILSINAY 1|
B seseste e e ool o et e e o e o o o e e o ok e o e e e |
LSIT OSH OdId NI 1|
1dA QITVNODIS O dA INTHUND WOUI §
} JOVSSIW O MIINIOA SINIASNI |
| ot et Aok A o A A e ok ot e ootk | -
TUNATIOUd ISIT DSW HIINT

1ee

ISIT H9SW HIINT QNT oge 110
134 mwm 8916 V112
G ‘(SU)DSW LYINO 9SW° IdA a1 42¢ .¥600 GCd9 9110
92¢
1d G2¢
i _ y2¢
4 Cd *(9Y)HSW LYINO HSUW*LdA a1 g2 ,¥600 £949 2110
i1 ISIT NI 9SW JHISNI 1 228
12¢
_ - ao 02¢ 9181 AT110
(9U)OSW LYIN*D OSW LdA ‘SH a1 61¢ ,¥600 G919 Je10
GYH ‘9y a1 81¢ 9GTV Vo10
. i INIT LXAN 139 1 3 ¢
; 91¢
m L 14 GI¢
HOUVAS O HSW WOoud LIXd 2 (5 ,2113 ©23G 9912
NIHL 1 JSIT 40 GNT | OF dI e1e ,V010 %03IS 2010
TIN# ‘GH 49 21 113d Godo 3ioo
112
1 I 1SIT 40 QN LON ATIHA _§I_ Od p1c
] tHIYVIS O HSH 6e¢
} I LSIT NI 5SW JYISNT | 3914 mem L9119 8035 V22
. L0
ed ‘(TH)LSIT DSH dA°LdA a1 90¢ L3100 ©1d9 9400
i ISIT 40 dol LV DSW JUASNI | soe
NIHL | X1dW3 SI ISIT 9SW § 03I I Yo ,3ie0 303C 2100
f TIN# ‘CH 49 coc diiy codo 300
20¢
(TH)LSIT 9SW dA°LdA *SH a1 14725 ,it00 GI19 Vige
! I ISIT 9SW NI 9SW JUASNT i 00¢
, 662
24 ‘(SY)UIANIS D _DSW° 1dA a1 862 ,2600 2249 9300
28 *(SH)ISH O HSW LdA a1 462 ,0600 ©CI9 2100

| NOILVWYOANT &LSIT FHVSSIW LYISNI | 962

.- - - o T — . .
T AT Lo T e T R TS T = » S - o e T e - = R T

I % 2 » DN9Iq ANT % » *» | 49¢€

14 99%
HOLINOW TIV) G9¢ 906V 00d4dS ¥cl0
- _ % ‘td val 450> L0210 1094 0c10
K1dW3 1SIT 9SW# ‘0¥ a1 €9¢ 1020 02912 J210
NIHL 03 dI 29¢ .8E€10 J03S 8210 {
TIN# ‘€H 4D 19¢ 1184 codo %210 A
P& % % « ONEIAQA % » = = | mmn
Ge :
(2H)ISIT 9SW°dA°LdA ‘CH at B8GE LA100 ¢219 021¢ d
i LSIT 9SW WOHJL OSW LSHIL TAOWIY 1 &mm
98
LSIT ONINNNY°LdA ‘2% a1 gee ,2000 2019 J110
14INZ 141"
1 etk e stestedeote et oot op e e oo et el ote ook | £5¢e
i DSW TAMd INISIYd 9¥ | 41 "
I DSW ITUL_IXIN :S¥ 16¢e o
! OSW IXAN %Y 0Ge ~
i OSW 1LSYId €y 1 672
i dA INTHHEAD 28 | 8ve
| STTAVIHUVA TIVIOT Ly
i (@INYNLIY) dA YAQNIS T4 | 9v¢e
i (QINYNLTY) OSW 0¥ | s¥ve ;
| $ SHILAWVHVL | 1445 '
} :3SN HALST1OIMI 5 45 w
T et oot gl feseole e ol e e e e e e s et e e sfe e e ok | a2¥ve
i T1 dA i 1%¢ |
i NV DSW S, HIANIS SNUNLEY | 3 4% .
i *LSIT AUL NO SIIVId ANV | 6CC
i 4SIT OSW WO¥I DSW SITAOWIY | : 8ee
§etededese e et et e doftoke ot el e ol oot ek | . . A%
TunaIdodd DSW LSYId L3D mnm 2119
e

yee

g

. ; ao
(98)9SW LXIN°D DSW°LdA °‘SH a1
GH ‘9y a1
i 9SW LXAN 139

_ 1d

HOMYIS O IIWI WOHI IIXd
NIBL 1§ ISIT 40 aNZ § OF d1
TIN# *‘GU d9

_ . oa
tHOUVIS O ITUd

I LSIT NI ZYISNT § ISTH

TIN# *(CH)DSH LXAIN'O HSH°LdA a1t
¥ *ISIT TAYL*LdA a1
1 ISIT 20 dQL LV LYASNI 1

NIRL 1§ ILdWT SI ISIT 3344 1 0T dI

TIN# *GY a9

1SIT 3344°1dA ‘GH a1

I ISIT TF4L NI IDVSSIW LUASNT

P4 ‘(29)LSIT DSW° A TdA a1
(SU)DSW LYIND OSW° LdA ‘¥H a1

Jovd | 62

¥6¢
¢g6ee
26e
16€
06¢
68¢
88¢
L8¢
98¢
172-3
¥8e
£3e
cee
18¢
o8

64€
84¢
LLE
9.8
GLe
¥Le
eLe
2L
Tie
gLe
69¢

. Y600

,4910
,9910
J344

L9410
. 7600
. 98092

. YG10
1143

., 9000

,d100
, 7520

9483
G919
9s1vy

803G
93s
Goda

803G
a31d
seav
€249

303
Godo

coto

¥cd9
19

2910
8910
9910

2910
3610
VGt1o

9610
4114
os1e
ovlo

avioe
»¥10

e¥ie

octe
ge1d

106

oW Sunive 4

—e e -
wfl. A

4ovdl 2%
1%
oT¥
A) _ 6a%
— HSW LSHII 13D QNT 80% 2810

107

138 uww 8046 LI0
9
(SU)9SH* O DSW° 1dA ‘@Y a1 Geb L0688 OS19 VLI
i (SH)UIANTS O " HSW LA *Td at 0% ,2600 1SI9 910
I (JA ONIGNES :TY *OSW :@d SNUNLIY) NOILVWHOAINI HSW 14D | <0b
20%
i) 14 10%
GH *(SU)DSW IXAN® O DSW' LdA a1 @0% %500 GCI9 2L10
€ *(9U)DSW LYAN® D DSW" IdA a1 66€ ,¥600 €949 3910
{ LSIT NI LHUISNI | 86¢
L6E
96¢

.
WA

I » » 9NdId QNI = *Hm

YOLINOW TIVD

. _ $ 'ty vat

I1dW3 ISIT 1aviu# ‘724 Qa1
NIHL 1 X1dWE ST ISIT 1 b3 d1
TIN# ‘PY d9
I o2 o » DNEEAQ % 2 x |

LSIT ONINNAH LdA ‘3Y

1 seaate e deatesie deotede et e e ool e e e e e oo teete §
_dA LX3AN 3y
dA INTISI¥d 3cH
144°dAa 91S :2¥
SITEAVIEVA 1TVI01
(L0dN1) dA QITVNDIS :TH
$QYILINVE YL
t3SN YIALSIDIY |
e et o e oo e e s o o e s o e ol e o ol ok ool e sleale e oeote
*qLVIS 1avi¥ NI LI Sind 1
] QNV I1I¥0I¥d AVI ISIT 1QaVviyg |
| OINI I dA TTNATHIS SLUASNI
§ e el o e o st o e el o ko oo ofe kol ke e ok ke e o e ok |
J4NaIosond

a1
A4INT

1avag IIvl

62¥
1% 4
LEY
9¢d
Gey
145 4
194 4
eeh
1$% 4
ocy
62¥
82¥%
(X4
92y
Sey
Vv
gev
444
2%
ozv
61¥
:134
L1y
91¥%
St¥

206V
2610
€009
.8610
1344

.2000

00dS $61P
1094 0610
8212 J819
303G 88T¢
¥0d0 %810

vot9 0810

2810

108

™ o o o
b e 1.

NIHL

} . ao
(S¥)dA 1avI¥ IXIN'JA°LdA ‘P¥ Q1
ye‘cd a1
i JINIT IXAN 139 1

_ _ 1d

_ HOWVES LSIT XQVIY WOHL LIXJ

I 14d°dA INISIYd < 144°dA 9IS 1 1D dI
(¥8) I8d°dA°1dA ‘24 4D

L 14

HOUVIS LSIT XAVIY WOUI LIXE
NIEL | ISIT 40 GNT 41 1 O3 dI
TIN# ‘%M dD

1 ISIT 30 QNI LON ITIEA | 0Q
*HJUVAS ISIT XAViH

I LSIT NI LYISNI I &SI

T4 *ISIT XAVIYE°1dA a1

¥H ‘(TH)dA XQVIY IXYIN°dA°LdA a1

i LSIT 30 INOMI LV LUISNI |
NIHL 1 IWd°dA XQVIY < I¥d°dA OIS | 19 dI
(¥4) 14d°dA°IdA ‘2 4o

(T¥) I84°dA°ldA ‘2¥ a1

Jovdi 69%
89¥
L9¥
99%
S9¥
¥9¥
£9%
(444
19%
09%
6G¥%
86¥
LSV
96%
'1°h 4
143 4
26¥
2sd
[1234
43 4
6%¥
8%¥
244
9%¥
°h 44
1444
155 44
(444
1847

100

.0aqte
.8010
,c100

,2aAt9
-VE10
d344

8010

. Y000
PRAL]

,04d10
.2100

.2100

0483
yei9
2 24

803G
2eds
eviy

8936
303s
049

803S

1249
¥1d9

203s
cvEd

et19

1010
vote
8010

¥a10
2310
2419

8412
Y10
odtoe

ovie

gvie
yViQ

avio
2610

3619

109

o
-
-~
i a5vd1 S8
1QVIY IXVW QN $3¥ 0a10
co¥
28%
134 1a% 8036 IATO
eev
1900 2410
IAVIY# * (TH)TIVIS dA°LdA a1 6.% ,%190 GTa% 3010
1 1avEY 0l TLVLS FONVHD | 8%
LLy
14 9L
.) GLy
T8 *(SH)dA IAVIE_LYIN"dA°LdA a1 L% ,0100 1Sd9 ¥q10
%4 *(TH)dA LQVIU LYIN®dA°IdA a1 2L L0100 %149 0a12
I ISIT NI JA™DIS LUASNI | 2L
1%

A4

N

© e s eI

I *dA SIHL 14 QIND0T SI IJA NTIHR SNEONIIY :JLON |

I (X00T°LdA_:%¥) I 00T N1dS TIVI
¥00T°1dA ‘%Y vail
I 1dA X207 1

IYINT

-&*************&***ﬁ**ﬁm**********_
SSIYAAV_XJ207T : %4 |
dATIQVIY IYIN :cH
(ONINNNY) dA ININUND :2¥
STTAVIUVA TVIO1
(YUOM13D Ol WVHVd) ¥4a 1Y
SATAVIAVA TVHOTH
(NENLIY) dA ONIANIS : 1y
(NYNLTY) HDSW QITVNOIS 0
SHILAWNYVHEVA 1§
*i*******************************
i SISSTOOUd TINYTY X4 AIIOANI 1
I TAILVAING WOO/ONXS TINMIY VHINI |
-i*********#****i*****************-
IYNaII0NUd LIVA

TI4VT 1dWITUd TUVAGUVE

208d 419 NOILOESS
Tv4019
I % & » SINIOd XMJINT TOMINO) OIJAVYL UINNI # » = |

o LR s L e ke,

QTR o e

e18
21s
| 94°]
a1s
605
B80S
495
9@S

147
€es
ces
106
005
66%
36%
L6¥%
96%
G6%
¥6%
£6¥
c6¥
16¥%
26%
68V
88%
L8V
98%

.0S18 00d1S voce
.0020 %09. 0000

111

e e P T

ey

o

I (44 $TH)T NHOALED TTIVD
I dA 1QV3i¥ ITAIDTIT LSHId TTINAIHIS |

Awammn dA*ldA ‘PIH Q1
{ 9dq Las i

ONILIVA# °(2¥)TLVIS°dA°LdA Q1T
I ILVLIS ONILIVA NI LI Ind |

TIN# *(28)dA XQVIY LXIN°dA°LdA Q1
4 ‘ISIT XQVA¥°IdA QT

] = = % ON4IA ANT » » = |
14
HOLINOW T1IVD
- _ $ ‘18 va1
ILdWT LSIT Xaviys ‘0¥ a1
NIHI 03 1
TIN# ‘cH dd
I % % 2 & DNAIT % % % =

14

I 1SIT XAvAY WOUd JA INTIHYND TAOWIY
NIHL | X3dwWT ST ISIT 9SW S.dA INI¥WAD | O3 dI

TIN# *(24)LSIT 9SW°dA°LdA

(28)dA " XAVIY “LXAN"JA°LdA ‘S¥
LSIT ONINNAN® LdA *2¥

dd

a1
art

Iovdil ¥¥%6
% 4°]
4 4°]
%S
2%S
6¢S
8¢es
4ES

9€6
Ges
ves

ees
ces
1es
0gs
625
82G
42S
926G
G628
L £4°
€26
22s
| £4°]
22s
616

81S
L1s
91¢g
S1s
| 2 1]

. 0000

0100

y100

,J100
. Y000

296V
. 9200
£000
,4200
d144d

L9920
.3100

L, 136
-, 2000

20 4S

219

2000
Geav

4444
ceav
€049

00 ds
1992
oate
303S
cad0

d03s
133
12avr

g2t
eot9

S¥00

Ico0o

JE00
gcee

9200
2ca0
a200

veoo
9220
2200
100
vigo

9100
v100
o100

3000
8000

L1V QN
) 134
I dATHAANIS:TH *DSW:oE :N¥OIIY |
Y00T°4dA YTD
i EdA YOOIND |
| dATHIANES:TY *OSW:OW SNENIEY | HSW LSHILTIED TIVO

IVl 4SS
966
GGS
¥SS
£66
¢GS
166
@SS
6¥%G
8%S

I ISIT 9SW S,dA (AAN IAXVW) INIHUND NO 9ISW LSHII IID i &4¥%S

9%G
1°2 4°]

-, 0000

0118

9600
8036 A¥00

80a¥y vV¥e0

084S 9Y90

e e T

i ((dA QITVNOIS :TH) | XQAVAY ZIVW TIVD
I XQVIY LI IIVW GNV dn L1 TAVA |

NZHL | ONIZIVA SI dA QITVNDIS | DT dI
ONILIVA# *(TH)IIVIS dA°LdA d9

1 (dA QITYNDIS:TY °“OSW:oH) 1 LSIT 9SW MIINI TIVD
i ISIT 9SW S,dA QITVNOIS NI 2SW TOVId |

I °dA SIHL Xf @IXD0T SI IdA NIHA SNUQLIW :ILION |
I (YOO0T°LdA_:%¥) I 00T NIdS TIVI

¥00T°LdA ‘Y Va1
t &dA 3007 1
I4LNT

B st e s s o e o e s s s fe s o e s o e o o e st o e e e fe e |
| SSTYAAV JJ0T° LdA :¥%Y |
| dA INIHIND ::2¥ i
l dA QITVNOIS :1¥ |
| SSATUVIUVA IVIOT |
| (JYOAL3D 01l WYHVE) ¥Ed ¥ty |
| _ STTAVIYVA TVICTID I
i (LNdNI) dI dA QIATVNDIS 3Ty i
| (LNANI) TOVSSAW 0¥ i
| $SHILAWVUVE |
! +ASN HILSININ I
§ seste s e s e s el sl s e s e o e ol ofe e o ol ek e e o e e
1 SISSIOOUd TIAINUIY X4 AT JOANI 1§
] TAILVWIUD WOO/ ONLS TANYIX VHINI |
T st s e sty s e s e sk ofe s e s o el e o ok el e e sl el e feoke §

IYNATI0Ud TVNDIS

AT AR T R - et e e e

685
886
485
98s

G68s
#8S
€8s
c8s
186
285
645
84S
445
94§
SuS
¥4S
£46
cLS
145
0.LS
695
896
496
995
G9%
voG
2956
296
196
089S
6GS
866

,9819

. 0400
,¥100

,1900

,0S10
. 00029

Bl R

fA34S 9900

223G 2900
2000 0900
ttavy Js00

004S 8500

084S ¥C00
994 0S02

2S00

ERMAL N AR R

o

o

e e

T e e s

v IOVd) 409 . @
\ TYNOIS NI 999 2800 1
134 509 8036 0800
| %09
3 3001 4da ¥1D €09 .2002 994¥ .00
| 1 1dA ¥D0IND 1 209
I Te9
14 299
I (490 :%TE)T JMOALZD T1VD 665 ,0000 OOIS BL00
| dA 1QVE¥ I1419T19 1S¥IL ITNAIRIS | 866
465
8 (ZH)4Ea° dA° LdA *¥TY a1 965 ,0100 1219 ¥200
i §4Q 13S 1§ G6S
65
1000 200
AQVIEN * (28)ILVIS dA°LdA a1 €66 %100 G20% 4900
ISIT ONINNDE®LdA 2 a1 266 .2300 2319 V939
| ILVLS X1AVIY NI dA LNIWUND ind | wmm

P . . pon

s draer

SR T vy 44353 e e T vl e Syt Tiee R R e

NO# *(T¥)1dWITUd dA°IdA

1dWa34d L3S aNd

13y

I #2 Nd) Ol LANYUIINI 1dWITUd TYVAQUVE QNIS NIHL
[(T2)0o0dd SIHA dA°LdA <> A1 J0¥d<L<DHIS J08dD> II °dAT] Ge9
*(ndd SIHL Ol AIIDANNOD ION) IVOOT ION dA IIDUVI II ¢« 1 ¥C9

a1

1 9VI4d 1dWTTYd dA 191 NO NuUnl 1
I T4 NI XYTIANI dA STAVIT SIHL |

q14V] dA J0TZIS# ‘QUY

IT0W
141

i XTANI dA OF QI dA LUIANOD

i *Q¥3I0T 4
ILON QIAN 1dA OS TONINDAS AIVS SV AINDISIQ :IION |

§ ol ste s eate el e e ol o o s e o o ofe o o e ek
| YIANT dA 2TH 1
i STTAVIYVA 1TVOO0T 1|
i QI dA 1asuvi:tua |
i $SYIIANVEVL |
i $ISN YALSIONAY 1§
T seoteieoe st e s e sl e s e o s e o o e sl e e e sgeoe §
I “TONVAQY §
1 01 19 QITIVI °"dA 1394vy |
INO LdNUHIINI LdWIIWd SIIS |
§ ateste ot e e e o e ol s et o ek o ese ok |

FYNaIdoud

LUINT

1dWITUd " 13S

aovdi 8%9
6e9
8£9
4€9
9¢9

€€9

(4%
1€9
2e9
629
829
429
929
G629
¥29
ge9
229
129
829
619
819
419
919
S19
19
€19
219
119
219
699
809

2600
8036 3800

4443 0800
,81080 G1d¥ 9300

0200 0061 %800
0004 2800

2800

116

PRI - A

(2¥)9da°daA°1da ‘¥1u . a1
. | 4dd 33S 1
LSIT ONINNANB LdA ‘2 a1

| dA INTHEND 13D |
*dA SIHL Xd€ QIXDOT SI IdA NIBA SNYNLIAY A LON |

i (X00T°14A_:%¥) I X007 N1dS
¥001°1dA ‘%Y

TIV)
va1

{ dA 3J0T i

B steste s el e e e ot ek ek e e e e ok |
dWil :6% i

HQAV 3Y0071°1ldA :%d i
YVA dW3IL €Y 1

dA INTQUND :2Y i
$STTAVIUVA TIVIO0T |

Hqa v1¥ i

ITIVIEVA IVH0TO i

asn 431S193Y |

Ao e e e oot o e e e ek oo e
*YHOALID 21 i

1 € QITIVY °*dA INZHE0DD 1
1 NO ¥4@ ITAI SAVOT 1
T sieae e ol e s e ek e s e it e e ofe el sieoeoe |
TUN@IJ0Ud

LULINT

1141

899
499
999
S99
¥99
€99
299
199
999
659
869
4S9
969
669
%S9
€69
2s9
169
0s9
6%9
8v9
4%9
9%9
S¥9
¥¥%9
£%9
2%9
%9

,010¢

~,2009

,9S19
. 0000

4219 0600

2019 8690

084S %600
¥09L 0600

9609

117

e

ITAI QNI

13y

I00T°&dA UTD
i LdA XO0INN i

I (¥49q :918)1 JHOAIID TTVD
i dA XAVIY ITIIOITE ISHIZ FTINATROS 1§

IqVIEN *(28)TLVIS dA°LdA a1
| ALVIS XAVIY 0L dA 13S |

NO# *(2¥)DV1d ITAI*dA°LIdA a1

I 9VIZ 4TaI S.dA INIYUNI NO N¥AL |
GH ‘(2¥)Hdqa°dA°ldA a1

- (eq)4ea°"dA*IdA ‘cH a1t
ITEVE dA J0TZISwdA TTIAI# °CX a1

i dA INI¥YND NO ¥4Q TTdI AVOT |

IDVdl 689
889
489
989
589
$89
€89
289
189
289

649
849
449

949
G49
¥i9
eL9
L9
149
849
699

. 0000

0000

100

,9100

,0120
.0100
0900

8036

80av

e0as

1000
ceavy

d1dd
Geay

G2d9
Ge19
gotre

2ooe
0000

4020

8400

9400
e

0400
ovoee

avae
yvoe
ovoe

118

I » &= D04IQ ANT » *HM
HOLINOW TTIV)

_ 1ydi ¢ 'ty vat

QIAOTIV LON JVAS¥ ‘0¥ a1
NIBEL | ONILIVA DSW 1 3N II

TIN# *(24)1SIT 9SW dA"IdA dD
I = 2 » 90630 = = % |

ISIT ONINNNY°LdA °2Y a1
} dA INIHNAD 13D 1

I “dA SIHL X€ d¥IJ0T S LdA NIHA SNYRLIW :JLON |
i (X00T°1dA_:%4) | YOOT NIdS TIVd

¥001°LdA ‘PY val
i LdA 3001 1
XYINT

§ e e she s e e ofe oo ol o e el e e e e
| 4aav IJ007T° LdA :¥%d
i dA INT¥HND 2%
| STTEVIUYA TVI01
i Hdq :91H
| SITAVIUVA TVE0TD
i (I0AN1) ¥4d@ m3N :TY
_ mmmam:<m<m
_
_*
_

asn gILsIodiyg |
dede ol dede dodede ot oo e dee |
*JYORLAD 24 1
I 14 qITTIVO °dA INIHYND |
I NO ¥€Q@ AMIN SAVOT 1
§ setese st e e e et et e geotetese ok | -
JU4ACII0Ud YAAA dVAS

14
2L
122
A2
614
81

41
914
514
147
€1
4 92
114
B8t
694
804
40
9084
Ges
yoL
€04
41
10
204
669
869
469
969
669
69
€69
269
169
269

eo6v
. 2022
G000
.v300

.3100

. 2000

.0S10
,83292

2045
109
0012
903G
1311
12ay

cet9

00 ds
%994

0300
2000
8100
¥aeo
2aad
3000

Vo900

9000
2300

2Jeo

119

e g

b oarta

Yy 2 aermr : r TR s e e p—— -

I9Vd1 SV

HAA A dVAS QN3 Yoo 2010
13y e%L 8036 0010
. ¥4
¥00T IdA ¥T19 52 ,0000 80d¥ 2400 o
i LdA X00TINA & A ~
62 ~
I (44asv»Td) 1 XYOMITD TIV) 8ge ,0000 004S 8100
I 4A 1avV3H FTAIDHTI LSHIL ITNATHIS § 8L
9¢4
1000 9400
1avius *(24)TLVIS°dA°LdA at See Y100 c2a¥ 2400
| LVIS 1aQvi¥ ol dA 1dS | ¥SL
ceL
) 0000 odoe
d10# *(2¥)HVId TTALI*dA°IdA a1 284 ,9180 G2a¥ 2302
I 9V1d 7141 430 NuNL 1§ 12
ece
T4 *(2¥)84a°dA° LdA a1 624 ,8188 1249 8100
1 dA INZHYAD NO ¥4Q MIN QVOT | 824
2%
(2¥)¥Eq°dA°LdA *HTH a1 924 ,0102 3219 %390
{ udq I3S | 624

veL

oo 205 dmm

- i

L

AV P ORI TR

I #»% “AINI0T A€ OL LdA
JYINOIY LON SIOA ANV FIININOIS TIVS :TLON %
I #pex HITANVA LAWTTYd TVOALUIA sewek

14
OVId 1S3J Wodd LIXdI
NIHL 1 140 ST OVId IdWITyd 1 03 dI
Lio# ‘14 42
(24) IdWITHd"dA°LdA *TH a1
I OVI4 IdNUUILNI LIWITYd LSHL |

ISIT ONINNDY IdA *2H Q1
| dA LNIEHND 14D |

*S1S HOSSIDOUdILTION YOI TYIH qIYINdIY L AVM AD

"qIYI IIVHE 9 LON AVHW SINIWILVIS OAL LXIAN JLON I

01

I NO SI HVId 1LJwITH¥d S,dA INTHUNOD ITIAM |_ 04

$OVId IS

§stesiesdeste ol oottt ek oot e deae ot et e ot |
i _ dA _LNTHEND :2¥ i
i OVIL INI LdWATY¥d 1Y i
i SITAVIHVA TVI0T 1
i asn ¥31s193y 1
| e deseotesedefeate et ojefede deskote e deoe el e el e |
I *TINYIN |
I WOdd LIXY3 XYTAT NOdN AIANOANI 1
i *I1IS SI OVId &1 1}
| LdNYYILNT SITANVH NV DVIL |
I IdOYYIINI LdWITHd yOd SISAL |
1 feotestesteote et e ot el e e e s e el ootk
d¥0qIooud IdWITUd

15
AHINT

“1s4l

184
8L
644
BLL
LLd
944
544
L {7
£LL
cLL
TLe
0L
694
89¢
494
994
G944
¥92
£94
294
192
29
6S
864
LS
9G4
=1°7/
14°71
€S
2%l
164
06
6%
8%
L%
9%

,2218
9110

0000
,8102

, 2200

R e Tl

80dg 21ilo
3035 3010
1040 VOtl0
1219 9010

cAtT9 2o19

2019

-

121

R SRR e
r LR @ - o LT A T O S

» - I9vdi 664
f | LdWITYd ISTL QAN 864 vei0
- 464
| | 134 964 8036 2219
. | UIJTTIILVD Ol N¥NITY | G564
$6L
ao €64 0493 @210
264
I sex YITANVH IdWAIYd TVALUIA ANT e | 162
26
I %% *LAOUUIALNI JUVAQUVE V STLVIAWIS ANY 684
‘ILdNYYTINI LAWITUd V I0 ISVO THL NI XINO QI SN SI 884
(TO¥INOD J1JdVHL) TIAIT UIddN NV O1 dWAL SIHL :AION #x | 484
YITANVH LdWIT™d 01 TIVD 984 828V 0804S 2110
| LINYUIINI 1LdWITUd ALVIONWIS 1| 117
¥84
2290 Vi19
Id0# *(24)1dWATYd dA"1dA AT £84 8100 G2Q¥v 911e

i 9V1d LdWiidd 13S3Y § c9L

T e TR e by et e o ooy ="

I7dv] dA I03ZIS# _‘ouy Ald
| GI dA Ol XYIANI dA I¥IANOD 1

- o# ‘od 341
ISIT ONINNQYU®IdA ‘1Y a1

I *dA SIHL Id QINIOT SI IdA NIHAR SNUALIY :ILON |
1 (300T°LdA_:94) 1 YOO0T NIdS TIVD

%001°LdA ‘Y Va1
I 3dA X001 |
AYINT

1 stestete oot tedestede e seokofe e ol e e e ol fote ok |

i INZILONO :TH i

i YIANIVWIY oY i

i ONIQIAIQ *0uY |

i SITAVIYVA TVOOT |

i (CINENLIY) QI dA 1Y 1

I SYILIWVYEYVd |

i Isn 9ALSIOAY 1

§ setesdeteuatesootooote de et te e s oot e e eteoeotetent |

i1 °aIXJI0T SI IdV_ITIHA LINO |

IGITVA SI 170SIY Al dA SNUALIY |

i *TO04INOD J1IAVHI X4 AQITIVD |

U oo deste e ol el e e e et e e e e e ol e e | -
IyaqIooud dA ONINNNE

928
Gee
144)
174
2es
123
eze
618
818
L18
913
18
¥18
218
213
118
p18
608
808
409
993
Ges
o8
£o8
2e8
tes

0200

, 2920

,BG10
,0000

2241 2¢10

200d ocie
1219 0210

0045 8213
¥09L ¥210

1 £4Y

123

}ﬂ.lﬂn_v P . . -

€
H
i
t
5
b
i
;

i

=&
o
qFoVdi ¢%9
4 4-] ,
| _ 1¥8 :
_ dA DONINNNY ONT %3 9510
i34 6¢3 8036 I¥12 s
8cs !
3001°1dA 410 €8 L0000 80d¥% V910
I » » DOEIA ANT » = 9¢8 !
Ges i
14 $¢9 :
YOJLINOW 11VD ces 925V 004G 9¥10
- _ % ‘1y va1l 2¢e8 P10 1094 2¥%10
40¥Yd XIAANI dA# ‘0¥ Q1 €8 o000 0812 Icte
NTHL 1 2 <> dEgQNIVWIY] aN 41 aes LI9P10 933G VE10
o# ‘0¥ d9 mmm 0000 0040 9CTP
8
I 2 %« % DNEIAA 2= »x = 1 428

R S PR R P o o e e e e S

TOHINOD DIZAVYL ¥IANNI GNT 183

288
648
) 848
J90T NIdS aN3 L48 vot1o
948 i
R4 4. 17X 80d6 98910 : ;
I »¢ °13SL I0 dSA ¥.8 :
NO SNOILOJI¥LISIY Ol €L8
TVONVW WSV/ZTd 3IS TLON x | FAA:]
3007 1S3J ‘IW ur 128 2153 9910
12.0) 13Sy " PAZ] ovae %910
i dI¥O0T IUALONULIS ATIHAM OQ | 698
$¥001 LS3} 898
I o = 90930 ANT &« » | 498
14 998
HOLINOW T1IVD Gog o6V @eds 0910
) $ ‘18 val %98 ,OS10 1992 D610 ~
3007 HINUNO# ‘¥ Q1 c98 0000 0012 BCIQ ~
NZHEL | QIYOOINN ION | AN d1 298 L3910 903G $CT10
1I0# ‘HP¥0 4D 198 0029 1%d6 0612
T & % » INEI@ »* &« x | e98
1 wx "INVSSTIIAN LON %2071 °*WILSIS 668 .
NI XTINTHYND YOSSTIOUd INO ITINO ZONIS :TLON %% | 868 p
IUINT LG8 :
§ sete e e e e et e s e e ook e e e ek | 968 i
P(LAANI) ¥@Av 00T :vd i Geo T
i SYALAWVYEVA | £1:] A
i IS0 YIALSIDIUI ¢ce
§ steteote el s e e e sole ke s ke e ool o e ek | csy
{ (4313Advuvd LNINI Xx€ 168
i Ol QIINIOA) THALONULS 268
1 VIVQ g3 J00IND SJO01T | 6%3
! °*BJ23W JOOT NId4S Ssasn 1} 8¥%8
B stuseste et ot e s o e o o e ot e o sl e e | L3

T40q3J0Ud 3001 NIdS 9%8 2510

I o AR Rk XA A S

oo A ool st e ~aght)

N N AR e -t -

ITXZ-32IS 9IS YOVIS =: QI SSIH0Ud ve |
I » & (XOVIS 40 JOL WOMJ) SIASIIO % % | ¢e)

22 :

0oTY=: 32157 9dS X0VIS 154 :

T=: 23S X0VLS 02 :

2=: dA TIVAV_ N !

=t _ dATEN ;

$9=: 938 "nwWW_UN :

¥=: STSSTOOUd UN 1

bogopeeedenerx SHTLTWVIVA WILSKS ook §

51
8t
PA ¢
91
GT
- _ %1
c =% YOoy¥I ISIT ONINNAW e1
T = 20UNT ISIT Xavay 21
@ = JOoU™I ISIT qINIOTIL 1§
I oxgiormsens STTOD ONATA wpetemesxsesesiesens | ot
6
8
A
9
]
4
£
2
T

APPENDIX B

! ANNOJ “1ON "INZAL
g=: QIOINYVAQY

I gttt STAOD SSIIINGS eiessedeseetetesk |
INVISNOD

I # SHIA &
21NAON TOHINOD "21ddvul

INIWTLVLIS TIUNOS IWLS 4009 r4o 01
eB°2 WSV3083Z

S

Jovdi

1 AUINT ON9H } 296VE =t HOLINOW

TITIX =2QITVANI

3443 =2 TIN

aeagx =: I141

2 =3qINI0Td
3

rqvay
SONINNOY
A _INIAT
¥ INIAX
430
NO
2 3STvd
1 anuy

1 xeteerdester SINVISNOD WILSIS setesmrspesiedeemes §

=t dAONINNNE OLI
o1evy = _T1a1_9011
=! gdqA dVAS_0il
8¢8Y% =: LdWidud 13§ 211
i ($°TT74V1 dwnr) o
i spnrgngx SITA TUNATIOU dWIL wopeesoer

1
0
3

43442

e o6 00 o0 ¢ o || oo |}

wwnououu

14
i4¥
9%
1°3 4
\ a4
19 4
44
134
av
6C
8¢
4E
9¢
13
e
€c
4y
1e
ec
62
8e
42
92
G2

127

o A e——

o Bt

(qyom 9] Ixvudy
ayon
ayor

F14VY LNTAT
(agom ¥») 1vauy
YIINIOA 4dV
HI9TINT
gT9TINT
ssayaav

[gd0A G) VMYV
(1g: (0]}
qyoA
Q4OA

- [L2

{ayom 9] IvdyY % HTTTIL 92
qQUOA SSYT -7
d40A ON ISV) v
qY003Y IT14VLI ISI €4

, (24

£ yIT114 14
cALNAIHLLIV 0
gaqv Isvd) 69
qH0J3Y ATAVLI ONW 89

(49

INNQI INE AT 99

T 931114 59

dv LYIN %9
TLVIS £9

14d 29

aeq] 19

Q40034 ITEVLIdV @9

_ [65
27U 85
131011 45
INTAT 9%
dTANVE] GG
qUod3¥ JITIVI INIAX wm
aQuoA §SINEIV 25
aQuoA HAINIOL dv wm
G

341l 6V

T s BT TET Ty

SR PR e e -

128

T9vd
[274VI SYVD 93U WKW UNxSTSSTI0Ud UN] AVUNV LSVD
(T14VvI OWW 93H AWK EN] IVEYV LSI

(
(3791 dV STSSIDOUd "UN] AVHHY v
(auoM 2) ivudy _ 431114
QOA LSIT QINIOTE
_ qHoA ISI1 1avig
AVEHV ONINNOY LSIT ONINNNE
quoA _ 3901

Q4OR Q0D7SSIIINS)

auooIx 14V

At it 4 ey e o . - . - Lt e e v

i ¢ot
2ot
101
oot
66
86
46
96
G6
¥6
€6
26
16

_ IVNYTINI 88
VIVA 0L NOILOISS 48

[A4OA dA TIVAV MN] AVHHY XVHYV ONINNAY

- (
[QUOA %] IVEMV G WATIIL
agos _ 1393
QUOA 2 INTAT
Q40N T INIAT
qHOA X201 1SVO |
140934 IT4VL SV

P S e

06%0
2600

129

N U Y o

14 et
HOYVIS dV XAVIH WoHd I1Xd 621 .9200 BO3IS VIoe
NIHL | XQv3¥ SSIJ0Ud 41 1| 0F dI 821 Li100 303G 9100
1200 %100

1avIu# ¢ (2¥)AIvis dv-idv d3 bm“ LY100 120y 0100
92
. Id G2l
BOYVIAS 4V 1AVIH WOHd LIXd A T4 ,9200 803S 2000
NIHL 1§ STSSIJOUd IQVIY ON d1 1t OF i1 get ,0130 303C 8000
_ TIN# *2¥ dd 221 didd 2040 v000
i (SSIJ)0dd XQvd¥ ™0 ISIT ANI) LON ITIEA | OQ 121
- SHOYVAS 4V iaQvay Pzt S
ISIT Xavi¥°1dv ‘2¥ a1 611 ,8200 2019 0000 ~
IYINT 811
1 aetese e e st s e e e te e ettt 19
| 4ld dA 3¢d i 911
i dV LXIN :2¥ § GIt
| . _ S@vVA TV00T i 1 29 ¢
|] dA INTYUYND *TY | elt
i (LNdNI) SUTLAWVUVL | 2tt
|} SN HALSIDIY 11T
B s s e s e e e ot s e e el e e e o e deoke | ottT
i *dA INTHYAD NO |} 601 w
] 44q@ IAvI4 LXYIN SAVOT i 8ot
T steate e et st e sl e s e s e e ek e e e § L4017
JYnaIooud JUOALID msﬁ 2030
21

2044 INI 01 NOILD3SS ¥OT

o

ERT

gavdi 2ot

161

JHOALID QNS eST

13% 651

_ _ 14 vl

I(HEA:TH)T WAAA dVAS 231 T1IVD PX 23
(2U)¥Eg-dY° 314V ‘TH a1 9%1
ONINNQE# ‘(2Y)ILVIS° 4V 1dYV a1 GHt
2Y ‘(TH)ISIT DNINNQHE® IV a1 2 31

1 dV XQvy¥ ISHIS GVOT 5% 2

. 1913 FA A

7017231 TIVO 151

TTAIX *{TH)ISIT ONINNAY’ IV a1 o%1
! $SIH0¥d FTUYI QVOT i 61

NEBY 1| 1avIY SISSTIOUd ON JII t OF dI 81
TIN#®2H E§) LT

oct

ao Gee

_ ey ‘2 a1 $CT

(24)dV LYIN*EV° L4V ‘g a1 gLt

} 4V XQVIH IX3AN 199 1 28t

- et i o = = T
i, bae A A ouar iy 3PP

et

Jasv
.0109

V100
. Y009

. 100
gi8v

. %0090

. €20
d3dd

. 9108

8036

084S
1219
2000
ceay
etd9

8335
0ads
aaaq
siav

I0IS
2040

i3
4444
eet9

¥y00
o%00
Jce0

8200
oo
cLoo0
q200

veoe
9200

%209
2200
120

1(Q1 dA sT4)1 JHOALID TIVD
I SSTDO¥d XAVIY LSUIZ QVOT I

14
Iavay# ' (24)ILViS°dvV L4V a1
NIHL 1 I701 ION I 3N I
TIA1# ‘24 dd
{ XAvEY¥ Ol II 13IS *sSSI00¥d ITAI NV ION 41 i
(TH)LSIT ONINNRE®LdV ‘2¥ a1
i dv 139

§(QI dASTY :SNUAZIH)E A ONINNQY DI TIVD
{ @I dA ONINNOZ 33D i

Txex LAV QIXI0T SVA SSTO0Ud NIHA SNUNLIY wxi
tex (30071°_1dV) ¥O30T LIVA TIVD #=xl
XY4IN
1 steote e e et e Aok el e e e e o e
1 _ _Hea %Iy
i Haqv Isve 9IS :€TH i
i SSIJOHd INTHHAD :2TH @
i STTAVIHVA (J&) 1TVHOTDi
§ e stele e e e et ke e e e e e e e e e ot ek |
1 IINVEIINT I
1LdWTTYd 0L ISNOdSIH NI |
{ dV X@vI¥ 1LS¥YId SAVOT 1
§ e e et gl e ot et § _ -
FUNAIIOHd YITANVE 1dWIAUd I

1.3
r4:14
181
281
641

841
INA
941
Gl
¥Ll
T
cLl
121
0L1
691
891
491
991
G691
¥91
51° ¢
291
191
091
651
BG1T
481
961
GGt
14°1
26t

. 0000

- V100
., 9909
qaada

. ¥000

8I8Y

004G

1020
Geadv
993S
cnde

r4 98]

2045

9900

¥900¢
0900
06923
8500

¥500

0500

2500

1}

TOUINOD 21X4AVHL QNI

YITANVE LaWITHd 91 QN3

%1

{sae INIAT STHL NO QIONVAGY ANV wxl
lax L4V QTAIOINA SVE SSADOUd NIHM SNUNLIY wxli
Tgee (3D0T°_L4V) JOOTIND LIVA TIVD sxi

161
P61
681
881
481
981
g3t
¥81

- - -

33191dwod LA1quassy
$310319 P

J900
8936 V909

v gt it

i i i

PERPI e i " re——ry

APPENDIX C

ADVANCE Procedure (HANDLE, INSTANCE)
Begin
Call WAIT_LOCK (APT)
! wake up !
PROCESS := EVENT_LIST_EEAD (HANDLE, INSTANCE)
COUNT := MM_ADVANCE_COUNT (HANDLE, INSTANCE)
! make ready !
Do while not end of READY_LIST
If PROCESS.COUNT <= COUNT THEN
Call MAKE_READY
end 1f
end do
! {nitialize preempt array !
Do for VP_ID = 1 TO #NR_VP

RUNNING_LIST [VP_ID].PRESMPT s= #TRUE
end do

! find preempt candidates !
CANDIDATES := ¢
PROCESS := READY_LIST_HEAD
Do (for VP_ID := 1 to #NR_VP) and not end READY_LIST
If PROCESS = #RUNNING THEN
e%gzNING_LIST (YP_ID} .PREEMPT := #FALSE

CANDIDATE := CANDIDATE +1
end ¢

Get next ready process
end do

134

e

! preempt candidates !

Do for VP_ID := 1 to CANDIDATES
If RUNNING_VP [VP_ID] = #TRUE Then
Call SET_VPREEMPT (VP_ID)

: end if

i end do

s S g i

Call WAIT_UNLOCK (APT)
Return

End ADVANCE

v A e et

s e et
-

135

| AWAIT Procedure (HANDLE, INSTANCE, COUNT) é
] Begin j
Call WAIT_LOCK (APT)
VP_ID := RUNNING_VP ;

PROCESS := RUNNING_LIST ([VP_1D] -
CURRENT _COUNT := MM_READ_COUNT (EANDLE, INSTANCE)

If CURRENT_COUNT < COUNT Then

Call THREAD_BLOCKED_LIST (HANDLE, INSTANCE, PROCESS)
PROCESS .HANDLE := HANDLE

PROCESS.INSTANCE := INSTANCE

PROCESS.COUNT := COUNT

PROCESS.STATE := #BLOCKED

P iyl bict

: Call TC_GETWORK
end if

Return

End AWAIT

1.

2.

7.

LIST OF REFERENCES

Coleman, A. A., sssnxklz_§=xn=l_n=sizn_£nx_§
Microprocessor—based Multilevel Archival Storage
%istem. M§ Thesis, Naval Postgraduate School,
e

cember 1979.

Parks, E. J., f a cur tor
azglgg. MS Thesis, Naval Postgraduate School,
Decemder 1979,

Moore, B, E. and Gary, A. V., The Design and
Implementation of the Memory Manager for a Secure
Archival Storagze System, M esis, Nava

Postgraduate School, June 198¢.

0’Connell, J. S., and Richardson, L. D., Distriduted
Secure Desisn for a Multi-Microprocessor Operating
System, MS Thesis, Naval Postgraduae School,
June 1979. (

Schell, LTCOL R. R., Security Kernels: A Methodical
Design of System Security, USE Technical Papers
{(Spring Conference, 15755. PpP. 245-25¢, March 1979.

Schiller, W. L..
The MITRE Corporation. Bedford Mass., May 197S.

Lampson, B. W., Protection, Proc. Fifth Princeton
Symposium on Information Sciences and Systems,

Princeton U., March 1971, pp. 437-443.

Dijkstra, B. W.,"The Structure of the ‘THE’
Multiproeramming System”, Communications of the ACM,
v. 11, p. 341-346, May 196€.

Madnick, S, F. and Donovon, J. J., Operating
Systems, McGrav Eill, 1974,

137

10.

11.

12.

13.

14,

15.

16'

17.

18.

19,

Saltzer, J. H.,
%omputgr System, Ph.D. Thesis, Massachusetts
nstitute of Technology, July 1966.

Reed, D. P., and Kanoda, R. XK., "Synchronization
vith Eventcounts and Sequencers ,
the ACM, V., 22, No. 2, Fedruary 1979, p. 115-123.

Reed, D, P., 2:gssi;ﬁ§_ngLsinlgxiez_lnrs_xfzsxss.
Operating System, + Massachusetts Institute of
Tecﬁnology. §157

LCS/TR-164, 1976.

Jensen, R. W., and Tonies, C. C., Softvare Enginerring,
Prentice-Hall, Inc., 1979.

Dijkstra, F. W., The Humdble Programmer’, ngmmnnlgg*igns
of the’ACM, V. 15, No. 18, p. 859~866, Cctober 1972.

Schroeder, M. D., Clarkx, D. D., and Saltzer, J. H.,
ign Prolject, Paper presented at
ACM Symposium, November, 1977,

Schroeder, M, D., "A Hardware Architecture for
Implementating Protection Rings , Commupnjcations of

Peuto, B. L., "Architecture of a Nev Microprocessor",

Oreanick, E. I., Ihi Multics s¥stem: An Examination of
its Structure, M ress, N

Wasson, ¥.J., D iled Design of the Kernel of
MS Thesis, Naval Postgraduate School, June 19840,

2.

4.

S.

6.

7.

9.

1e.

T

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginta 22314

Libdbrary, Code 9142
Naval Postgraduate School
Monterey, California 9394¢

Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

Prof. Lyle A. Cox, Jr., Code 52C1
Department of Computer Science
Naval Postgraduate School
Monterey, California 9394¢

LTCOL Roger R. Schell, Code 52§}
Department of Computer Science
Naval Postgraduvate School
Monterey, California 93940

Joel Trimdle, Code 221
Office of Naval Research
800 North Quincy
Arlington, Virginia 22217

LT Alarn V. Gary
3320 W. Epler Ave.
Indianapolis, Indiana 46217

LCDR Edmund E, Moore
NAVELEXSYSCOM

PME 107

Vashington, D.C. 20360

CAPT John L. Ross
107 Headon St.
Weatherford, Texas 76086

1T Ral R. Powell
1295 HReatherstone Way
Sunnyvale, California 94267

139

No. Cogies

b, P33 i s AN

phvccia ;o

P

11.

12.

13.

1s.

18.

16,

17

ie,

19.

20.

Office of Research Administriation

Code 212A
Naval Postgraduate School
Monterey, California 93942

Prof. Unc R. Kodres, Code 52Kr
Department of Computer Scieace

Naval Postgraduate School
Monterey, California 93940

I. Larry Avrunin, Codels
DTNSRDC
Pethesda, Maryland 20084

Naval Oceans Systems Center
San Diego, Califoraia 92152

Kathryn Heninger, Code 7503
Naval Research labd
vashington, D.C. 22375

Dr. J. McGraw

U.C. - LoLoL. (1-794)

P.0. Box 8e8

Livermore, California 94550

Mark Underwvood
NPRDC :
San Diego, California 92152

Walter P. ¥Warner, Code K7¢
NSWC
Dahlgren, Virginia 22448

M. Ceorge Michael

UQCQ - LOIIOI'. (Il-'?e)

P.0. Box 808

Livermore, California 9455¢

LCDR Stephen L. Reit:z
NAVSEA TECHREP
St. Paul, Minpesota 30845

Fhi 0 T

